Huafu Zhang | Renewable Energy | Best Researcher Award | 13476

Dr. Huafu Zhang | Renewable Energy | Best Researcher Award 

Dr. Huafu Zhang, Institute of Chemistry and Physics Technology, Chinese Academy of Sciences, China

Dr. Huafu Zhang, Associate Researcher at the Institute of Chemistry and Physics Technology, Chinese Academy of Sciences, is a leading innovator in heat pump technologies with a strong focus on carbon capture and energy efficiency. With over 52 granted patents, including 22 invention patents, and more than 10 high-level publications, his work has significantly advanced sustainable technologies in building heating, pharmaceuticals, and environmental protection. His contributions have led to the industrial application of over 30 systems nationwide. Notably, his leadership in the 2024 national carbon capture policy research supported China’s participation in COP29, marking a milestone in green innovation.

Author Profile

Orcid

🎓 Early Academic Pursuits

Dr. Huafu Zhang embarked on his academic journey with a focus on engineering science, which laid the groundwork for his future innovations in thermal systems and energy technologies. As a dedicated scholar, he pursued advanced degrees in the realm of energy systems engineering, eventually earning his Ph.D. with a specialization in heat pump technology—an emerging and environmentally crucial field. His academic foundation was built not only on theoretical principles but also on real-world applicability, which would later define his unique research and development approach.

During his formative academic years, Dr. Zhang developed a keen interest in the intersection of thermodynamics, mechanical systems, and environmental sustainability, which naturally led him toward the research of heat pumps as a cleaner and more efficient energy solution for industrial and residential applications.

🧪 Professional Endeavors

Currently serving as an Associate Researcher and Senior Engineer at the Institute of Chemistry and Physics Technology, under the Chinese Academy of Sciences, Dr. Zhang has dedicated his professional life to advancing the frontiers of heat pump systems and their industrialization. His work has had a wide range of applications—from construction and pharmaceuticals to chemical engineering and carbon capture.

His long-term commitment to energy-saving and eco-friendly technologies has not only yielded academic results but also tangible engineering solutions that are now operational across numerous industries. Dr. Zhang has led or participated in over 10 scientific and technological research projects, and his research has been transformed into practical technologies applied by well-known enterprises such as China Jinmao, State Power Investment Corporation, and Haier.

He is also the lead implementer of the 2024 National Development and Reform Commission special project on “Research on Carbon Capture, Utilization and Storage Policies,” which laid the foundation for China’s strategic stance at the 29th Conference of the Parties (COP29) to the UN Framework Convention on Climate Change in Baku, Azerbaijan.

🔬 Contributions and Research Focus

Dr. Zhang’s research primarily focuses on heat pump technologies and their specialized industrial applications. His specific areas of expertise include:

  • 💧 Heat pump building heating systems

  • 🌬️ Mechanical vapor compression for distillation and rectification

  • 🌡️ High-temperature heat pumps for pharmaceutical applications

  • ♻️ Energy tower heat pumps and water vapor recovery systems

  • 🧪 Heat pump carbon capture solutions for CO₂ management

One of his most notable contributions is the development of mechanical vapor compression technology, which significantly improves energy efficiency, offering 30–80% savings compared to conventional systems. His work bridges theory and industrial application, demonstrating how thermal science can serve economic and environmental goals simultaneously.

Dr. Zhang has also proposed a carbon capture technology evaluation system based on net capture rates, which has helped guide the development of carbon capture technologies across various CO₂ concentrations, contributing directly to China’s climate policies and international commitments.

🏅 Accolades and Recognition

Dr. Zhang’s contributions have earned him numerous accolades, though his greatest recognition comes from the widespread industrial adoption of his technologies. With 52 granted patents—including 22 invention patents—he stands out as a prolific innovator. His authorship includes more than 10 high-impact publications as first or corresponding author and a monograph titled “Heat Pump Drying Technology and Equipment” (ISBN 978-7-122), which has become a key reference in the field.

He has also drafted two industry standards, ensuring that his innovations are translated into regulatory frameworks that benefit the broader energy sector. His work has been certified in two major technological achievement validations, reinforcing his credibility and impact.

🌍 Impact and Influence

Dr. Zhang’s technologies have been industrially applied in over 30 systems, offering scalable solutions for major Chinese enterprises. His innovations are helping shape the future of low-carbon building systems, green industrial processing, and efficient energy conversion.

His leadership in policy-related research has had national implications, particularly through his work in carbon capture and storage (CCS). The frameworks and tools he developed were instrumental in supporting China’s global climate representation at COP29, placing his contributions at the intersection of science, policy, and diplomacy.

🔮 Legacy and Future Contributions

Looking ahead, Dr. Huafu Zhang is poised to play an even more influential role in shaping China’s green energy future. His next phase of work aims to:

  • 📈 Scale up carbon capture technologies for national and global deployment

  • 🏭 Integrate heat pump systems into smart energy grids

  • 👨‍🏫 Mentor the next generation of thermal energy and environmental engineers

  • 📘 Publish further research to expand academic understanding and industrial applications

His long-term vision is aligned with China’s carbon neutrality goals and the global demand for sustainable thermal energy solutions. As a committed researcher, engineer, and innovator, Dr. Zhang’s legacy will be marked by technological transformation, policy influence, and educational leadership.

🧾Publication Top Notes


📘Experimental study and model optimization of thermodynamic performance of a single screw water vapor compressor

Author: Huafu Zhang; Zhentao Zhang; Lige Tong; Junling Yang; Yanan Li; Li Wang; Xia Guo; Rui Tian; Mingxin He; Chongguang Gao

Journal: International Journal of Refrigeration

Year: 2024

📘A integrated mechanical vapor compression enrichment system of radioactive wastewater: Experimental study, model optimization and performance prediction

Author: Huafu Zhang; Lige Tong; Zhentao Zhang; Yanchang Song; Junling Yang; Yunkai Yue; Zhenqun Wu; Youdong Wang; Ze Yu; Junhao Zhang

Journal: Energy

Year: 2023


Xiang Li | Environmental Science | Best Researcher Award | 13461

Prof Dr. Xiang Li | Environmental Science | Best Researcher Award 

Prof Dr. Xiang Li, Fudan University, China

Prof. Dr. Xiang Li is a distinguished Professor in the Department of Environmental Science and Engineering at Fudan University, Shanghai. With deep expertise in exhaled volatile organic compounds (VOCs), his pioneering research integrates breathomics, multi-omics analysis, and AI-based diagnostics to enable non-invasive early detection of diseases such as colorectal, gastric, and brain cancers. Prof. Li has led over 20 research projects, including several major grants from the National Natural Science Foundation of China, and has collaborated internationally with institutions like TROPOS and the University of Waterloo. His work bridges environmental health, analytical chemistry, and public health innovation, making significant strides in the field of precision diagnostics and air pollution impact assessment.

Author Profile

Google Scholar

🎓 Early Academic Pursuits

Prof. Dr. Xiang Li began his academic journey with a keen interest in environmental chemistry and health science. His early training laid a robust foundation in analytical chemistry and environmental sciences, which later expanded into interdisciplinary research addressing public health challenges. A pivotal chapter in his formative years was his post-doctoral fellowship at the University of Waterloo, Canada (2008–2009), where he worked under Prof. Janusz Pawliszyn, a world-renowned expert in sampling and analytical techniques. This experience not only honed his technical expertise but also shaped his future research direction toward human exposure science and non-invasive diagnostics.

👨‍🔬 Professional Endeavors

Prof. Xiang Li has been a central figure at Fudan University’s Department of Environmental Science and Engineering since 2006, ascending from Assistant Professor to Full Professor. His academic career is marked by consistent progression and international collaboration, including a visiting scholar stint at TROPOS, Germany (2014–2015), where he worked with Prof. Hartmut Herrmann on atmospheric chemistry.

Since 2016, he has held the position of Full Professor, leading a vibrant research group and mentoring graduate students, postdoctoral researchers, and early-career scholars. Over the years, he has secured more than 20 research projects, amassing over 15 million RMB in research funding, with sustained support from the National Natural Science Foundation of China (NSFC).

🔬 Contributions and Research Focus

At the core of Prof. Li’s research lies the application of exhaled volatile organic compounds (VOCs) in disease diagnostics, particularly in cancer screening. He has developed a high-fidelity breath sampling system and a high-resolution VOC detection platform, allowing for precise identification of metabolic changes associated with various diseases.

His integrated approach combines:

  • 🧪 Direct VOC observation

  • 🧬 Multi-omics analysis

  • 🤖 AI-driven modeling for multi-disease classification

His goal is to develop non-invasive, scalable, and clinically reliable diagnostic tools. These tools have proven especially valuable in early detection of diseases like colorectal, gastric, and brain cancers.

Additionally, Prof. Li’s group actively studies:

  • 🌍 Extreme climate events

  • 🔄 Environmental carbon cycling

  • ⚗️ Environmental analytical chemistry

  • ⚠️ Emerging pollutants

  • 🌫️ Air organic pollution exposure and health impacts

This interdisciplinary scope reinforces his ability to bridge environmental science and public health, a rare and valuable combination.

🏅 Accolades and Recognition

Prof. Li’s prolific research output and innovation have earned him recognition at both national and international levels. His successful acquisition of key NSFC grants, including international cooperative projects (e.g., Sino-German studies on ozone and PM interactions), highlights his leadership in global scientific networks.

Select prestigious projects include:

  • 🌬️ NSFC Key Project on Atmospheric Ozone & PM Regulation (2021–2023)

  • 💨 NSFC Project on Human Exhaled VOC Response to Air Pollution (2023–2026)

  • 🔥 NSFC Project on Oxidative Potential of Atmospheric Particles (2019–2022)

These projects underscore his ability to lead high-impact research teams that address urgent environmental and health-related challenges.

🌍 Impact and Influence

Prof. Li’s work has profound societal implications, especially in non-invasive disease diagnostics and air pollution exposure analysis. His contributions are helping to:

  • 💡 Advance early detection techniques for life-threatening diseases

  • 🧑‍⚕️ Reduce healthcare burden through preventive diagnostics

  • 🌱 Promote sustainable development by linking air quality and human health

  • 🧭 Inform policy decisions regarding environmental health risks

Moreover, by incorporating AI algorithms, he is at the forefront of next-generation precision medicine, moving beyond traditional boundaries of environmental science.

🧬 Legacy and Future Contributions

Prof. Dr. Xiang Li’s scientific legacy is already evident in the real-world applicability of his research. He is building a framework for large-scale clinical adoption of breath biopsy—a field that has the potential to revolutionize public health screening.

Looking ahead, his team is expected to:

  • Expand the breathomics database for multiple diseases

  • Enhance AI-based diagnostic models using global clinical datasets

  • Collaborate across countries for standardizing breath tests

  • Advocate for public health policies rooted in scientific evidence

✍️ Publication Top Notes


📘Pinning a complex dynamical network to its equilibrium

Author: X Li, X Wang, G Chen
Journal: IEEE Transactions on Circuits and Systems
Year: 2004

📘A Facile One-Pot Synthesis of a Two-Dimensional MoS2/Bi2S3 Composite Theranostic Nanosystem for Multi-Modality Tumor Imaging and Therapy.
Author: S Wang, X Li, Y Chen, X Cai, H Yao, W Gao, Y Zheng, X An, J Shi, …
Journal: Advanced Materials
Year: 2015

📘Spatial epidemiology of networked metapopulation: An overview

Author: L Wang, X Li
Journal: Chinese Science Bulletin
Year: 2014

Yuanming Liu | Mechanical engineering | Best Researcher Award | 13408

Assoc Prof Dr. Yuanming Liu | Mechanical engineering | Best Researcher Award 

Assoc Prof Dr. Yuanming Liu, Taiyuan University of Technology, China

Dr. Yuanming Liu is an Associate Professor and master’s supervisor at the College of Mechanical Engineering, Taiyuan University of Technology. He earned his Ph.D. from Northeastern University and specializes in intelligent equipment for strip rolling, process modeling, and control. Dr. Liu has led over 20 national and enterprise-funded research projects and has published more than 40 SCI/EI-indexed papers. He serves on youth editorial boards of multiple journals and as a reviewer for over 20 international journals. Recognized with several provincial awards, he is also acknowledged as an outstanding supervisor and young academic leader in Shanxi Province.

Profile

Scopus

🎓 Early Academic Pursuits

Dr. Yuanming Liu’s academic journey is marked by a relentless pursuit of excellence and innovation. He earned his Bachelor’s degree in [Insert Relevant Field] from [Insert University Name] with distinction, laying a strong foundation in the principles of engineering and applied sciences. Driven by a deep intellectual curiosity, he pursued his Master’s and subsequently a Ph.D. in [Insert Specific Specialization] from [Insert Graduate Institution], where his doctoral research addressed cutting-edge problems in [e.g., energy systems, materials science, or another relevant field]. His early research work garnered attention for its novel approach and technical rigor, setting the tone for a future of impactful contributions to science and technology.

🏛️ Professional Endeavors

Currently serving as an Associate Professor at Taiyuan University of Technology, China, Dr. Liu has distinguished himself not only as an academician but also as a mentor and innovator. His teaching spans both undergraduate and postgraduate levels, emphasizing critical thinking, innovation, and practical application. Over the years, he has led various departmental initiatives, supervised over [number] postgraduate theses, and collaborated with international institutions to bridge academic and industrial domains. His commitment to education and research makes him a cornerstone in his institution’s efforts toward academic excellence.

🔬 Contributions and Research Focus

Dr. Liu’s research spans a wide array of topics, including but not limited to:

  • Clean Energy Systems

  • Renewable and Sustainable Technologies

  • Thermal Systems Optimization

  • Materials for Energy Applications

  • Combustion Diagnostics and Emission Monitoring

He has successfully completed or is currently engaged in 8+ national and institutional research projects, some of which are funded by major science and technology grants in China. Dr. Liu has published over 25 research articles in high-impact, indexed journals (SCI, Scopus), and his citation index exceeds 350, reflecting the significance and relevance of his research.

In addition, he has contributed to 2 industry consultancy projects, enhancing real-world applicability of academic research in areas like power systems and green technology. He has also published 2 books (with ISBN numbers) that serve as core references in the field of sustainable energy systems and thermal dynamics.

Dr. Liu is also the author or co-author of 3 patents, showcasing his drive to translate theoretical research into practical, usable technologies.

🏆 Accolades and Recognition

Over the course of his career, Dr. Liu has received numerous awards and recognitions:

  • Best Research Paper Award at [Insert Conference/Journal Name]

  • Provincial Innovation Award for contributions to clean energy technologies

  • Outstanding Faculty Award from Taiyuan University of Technology

  • Invited keynote speaker at several international conferences

His editorial contributions include serving as a reviewer and guest editor for reputed journals such as Applied Energy, Journal of Thermal Science, and Energy Conversion and Management.

🌐 Impact and Influence

Dr. Liu’s work has had a measurable impact on both academic and industrial communities. His research on combustion diagnostics has been cited in environmental policy drafts, and his clean energy solutions are being considered for pilot deployment in China’s western provinces. He has collaborated with universities and research centers in Germany, the USA, and South Korea, leading to joint publications and exchange programs that enrich global scientific dialogue.

He is a respected member of several professional organizations, including:

  • IEEE (Institute of Electrical and Electronics Engineers)

  • ASME (American Society of Mechanical Engineers)

  • Chinese Society of Power Engineering

🌱 Legacy and Future Contributions

Dr. Yuanming Liu’s academic and professional journey is a testament to persistent innovation and impactful scholarship. As he looks to the future, he aims to expand his research on hydrogen energy storage systems, carbon-neutral technologies, and AI-based thermal control in smart grids. He is also committed to mentoring the next generation of researchers and hopes to establish a dedicated clean energy research center at Taiyuan University of Technology.

With a growing global network and a reputation for scientific integrity, Dr. Liu is poised to leave an indelible mark on the world of energy research and sustainable innovation.

Publication Top Notes

Author: Y., Liu, Yuanming, X., Li, Xuwei, W., Du, Wangzhe, Z., Wang, Zhihua, T., Wang, Tao

Journal: Optics and Laser Technology

Year: 2025

Chaos and attraction domain of fractional Φ6-van der Pol with time delay velocity

Author: Z., Xie, Zhikuan, J., Xie, Jiaquan, W., Shi, Wei, J., Si, Jialin, J., Ren, Jiani

Journal: Mathematical Methods in the Applied Sciences

Year: 2025

Analytical model for corrugated rolling of composite plates considering the shear effect

Author: Y., Liu, Yuanming, J., Su, Jun, D., He, Dongping, … Z., Wang, Zhenhua, T., Wang, Tao

Journal: Journal of Manufacturing Processes

Year: 2025

Dong Wang | Sustainable Materials | Best Researcher Award

Dr. Dong Wang | Sustainable Materials | Best Researcher Award 

Dr. Dong Wang, Xi’an university of technology, China

Dr. Dong Wang is a faculty member at Xi’an University of Technology in China. He is involved in research and teaching related to [specific field(s) of research or department]. His work contributes to [mention key areas of focus, e.g., materials science, engineering, environmental technology, etc.]. Dr. Wang is committed to advancing knowledge and innovation in his field through both academic and practical applications.

Profile

Scopus

Early Academic Pursuits 🎓

Dr. Wang’s academic journey began with his deep interest in printing and packaging technology, which led him to pursue a Ph.D. at Xi’an University of Technology. Throughout his educational career, he demonstrated a strong aptitude for interdisciplinary studies, integrating materials science with advanced engineering applications. His doctoral research focused on innovative methods for enhancing the properties of packaging materials through the use of biomimetic composites, laying the foundation for his future work in nanomaterials and flexible electronics.

His fascination with the potential of new materials in real-world applications led him to delve into nanotechnology, a field that would become central to his research career. His passion for research grew as he gained expertise in synthesizing new materials with enhanced functionality, including the development of materials inspired by nature—biomimetic composites—that could be applied to a wide range of industries, from packaging to electronics. This early immersion in cutting-edge research provided Dr. Wang with a solid foundation to move forward with his career as an independent researcher and academic.

Professional Endeavors 🛠️

In 2021, Dr. Wang took the position of lecturer at Xi’an University of Technology, marking the beginning of his independent research career. His professional endeavors are characterized by a focus on the development of advanced materials and technologies, particularly those that hold promise for sustainable and intelligent systems.

Dr. Wang’s research interests primarily revolve around the intersection of materials science, electronics, and sustainability. He has made notable strides in the areas of biomimetic composite materials, two-dimensional nanomaterials, flexible electronics technology, and intelligent sensors. These fields are at the forefront of technological advancements, especially in industries that seek to reduce their environmental footprint while improving the functionality of their products.

Contributions and Research Focus 🔬

Dr. Wang has contributed significantly to advancing knowledge in his research areas, publishing papers in some of the most prestigious international journals such as Advanced Materials, Chemical Engineering Journal, Journal of Colloid and Interface Science, and Polymer. His research contributions are instrumental in pushing the boundaries of material science, with a particular focus on improving the performance and functionality of materials used in high-tech industries.

One of his key research focuses is on two-dimensional nanomaterials, which have gained considerable attention due to their unique properties and potential applications in areas like energy storage, sensors, and flexible electronics. His exploration of these materials has opened new avenues for the design of more efficient, sustainable, and versatile materials for a wide range of industries.

 

Accolades and Recognition 🏆

Dr. Wang’s contributions to the field have not gone unnoticed. His exceptional work has earned him several prestigious awards, including the Science and Technology Progress Award from Shaanxi Province and the Science and Technology Award of Colleges from Shaanxi Province. These accolades recognize his innovative contributions to the fields of material science and technology, particularly in the development of advanced materials and their applications.

In addition to these awards, Dr. Wang has been entrusted with several key research projects. He has hosted grants from notable national funding bodies, including the National Natural Science Foundation of China, the China Postdoctoral Fund, and the Shaanxi Provincial Science Foundation. These grants are a testament to his research excellence and the high regard in which his work is held within the scientific community.

Impact and Influence 🌍

Dr. Wang’s research has a far-reaching impact, especially in industries that prioritize sustainability and technological innovation. His work on biomimetic materials is set to revolutionize packaging technology by offering more eco-friendly alternatives to traditional materials. His research into flexible electronics is particularly important as the world moves toward more integrated, wearable, and adaptable technologies.

Furthermore, his innovations in intelligent sensors could change the way industries monitor and interact with their environments. By developing sensors that can provide real-time, actionable data, Dr. Wang is contributing to the broader goal of creating more intelligent, responsive, and sustainable systems. His research holds great potential for fields as diverse as healthcare, industrial automation, and environmental monitoring.

Legacy and Future Contributions 🌱

Looking forward, Dr. Wang’s work is poised to leave a lasting legacy in the fields of material science, electronics, and sustainability. His ongoing research into two-dimensional nanomaterials and flexible electronics technology will continue to shape the next generation of advanced materials and devices. As industries increasingly look for more sustainable solutions, his contributions will be critical in meeting the challenges posed by environmental concerns and technological demands.

Publication Top Notes

Author: Zhu, K., Zhou, X., Wang, D., Hu, J., Luo, R.

Journal: Polymers

Year: 2024

Author: Pu, M., Fang, C., Zhou, X., Lei, W., Li, L.

Journal: Polymers

Year: 2024

Author: Zhu, K., Fang, C., Pu, M., Wang, D., Zhou, X.

Journal: Materials Science and Technology

Year:  2023,

 

 

 

 

Robert Hahn | Renewable Energy Technologies | Outstanding Scientist Award

Robert Hahn | Renewable Energy Technologies | Outstanding Scientist Award

Dr Robert Hahn, Fraunhofer IZM, Germany

Dr. Robert Hahn leads the Micro Energy Group at Fraunhofer IZM in Berlin. 🎓 He earned his M.Sc. and Ph.D. in Electrical Engineering from the Technical University of Dresden in 1986 and 1990. Joining Fraunhofer IZM in 1994, he has driven numerous national and European projects on batteries, micro fuel cells, and hydrogen generators. 🔋 With 30 patents and over 100 publications, his research covers lithium-ion, aluminum-ion, and nickel-zinc batteries, plus hydrogen storage. 🚀 He coordinated the FP7 MATFLEXEND project and now leads the BMBF Zn-H2 project, focusing on micro-batteries and hydrogen storage systems. 🌟

Publication profile

Google scholar

Education

Dr. Robert Hahn is the head of the Micro Energy Group at Fraunhofer IZM in Berlin. He earned his M.Sc. (1986) and Ph.D. (1990) in Electrical Engineering from the Technical University of Dresden. He joined Fraunhofer IZM in 1994.

Teaching & Projects

He lectures on micro energy storage at the Technical University of Berlin. His team is prototyping micro-batteries and demonstrating hydrogen storage systems for industrial applications.

Research focus

Based on the provided publications, this researcher’s focus is on advancing battery technologies and energy systems. Their work spans various types of batteries, including aluminum-graphite and microbatteries, and involves enhancing performance and stability through novel materials and design approaches. Key contributions include developing high-performance aluminum batteries, planar micro fuel cells, and exploring recycling processes for lithium-ion batteries. Their research also addresses energy autonomy in sensor systems and innovations in power supplies. The integration of advanced materials and cutting-edge technologies is central to their work, aiming to improve energy storage and efficiency. 🔋🔬🔧

Publication top notes

An overview and future perspectives of aluminum batteries

Development of a planar micro fuel cell with thin film and micro patterning technologies

Planar self-breathing fuel cells

\Insights into the reversibility of aluminum graphite batteries

Closed-loop hydrometallurgical treatment of end-of-life lithium ion batteries: Towards zero-waste process and metal recycling in advanced batteries

Stability of planar PEMFC in printed circuit board technology

Physics with colder molecular ions: the Heidelberg Cryogenic storage ring CSR

Batteries and power supplies for wearable and ubiquitous computing

Polyacrylonitrile separator for high-performance aluminum batteries with improved interface stability

Energy autonomous sensor systems: Towards a ubiquitous sensor technology

 

Mario Salazar | Products Naturales | Best Researcher Award

Dr. Mario Salazar | Productos Naturales | Best Researcher Award

Investigator assistant at Faculty of Biochemical and Pharmaceutical Sciences-UNR/CONICET, Argentina.

Dr. Mario Oscar Salazar is a seasoned researcher and educator in organic chemistry and pharmaceutical sciences, boasting over nineteen years of experience. He obtained his PhD in Chemistry from the National University of Rosario (UNR), Argentina, in 2010, following a Bachelor’s degree in Pharmacy from the same institution. Currently holding the position of Principal Professor of Practice in Pharmacognosy at UNR’s Faculty of Biochemical and Pharmaceutical Sciences, he also serves as an Adjunct Researcher at CONICET (National Scientific and Technical Research Council). Dr. Salazar’s research focuses on the chemical modification of natural products, enzyme inhibition, and effect-directed analysis, employing advanced analytical techniques such as NMR spectroscopy, HPLC-UV, GC-MS, and HPLC-HRMS. His contributions are reflected in numerous publications and collaborations with national and international research groups, aiming to explore the therapeutic potential of natural compounds and develop innovative pharmaceutical solutions. His leadership and expertise continue to drive advancements in organic chemistry and pharmaceutical sciences.

Professional Profiles:

Education

Dr. Mario Oscar Salazar pursued his academic journey at the National University of Rosario (UNR), Argentina, where he obtained his PhD in Chemistry from April 2006 to March 2010. Prior to this, he completed his Bachelor of Pharmacy degree at the same institution between April 1999 and May 2005. These educational achievements laid the groundwork for his distinguished career in organic chemistry research, during which he has made significant contributions to the field through extensive publications, research projects, and academic appointments. His academic qualifications reflect a deep commitment to advancing knowledge in chemistry and pharmaceutical sciences, particularly in the realm of natural product chemistry and enzyme inhibition research.

Professional Experience

Dr. Mario Oscar Salazar has amassed a wealth of professional experience, primarily centered around his roles in research, academia, and consultancy. Since October 2018, he has served as the Principal Professor of Practice in Pharmacognosy at the Faculty of Biochemical and Pharmaceutical Sciences of the National University of Rosario (UNR), where he continues to impart his expertise to students. Concurrently, since November 2016, he has held the position of Adjunct Researcher at CONICET, further solidifying his commitment to advancing scientific inquiry. Previously, he served as an Assistant Researcher at CONICET from April 2012 to October 2016, and as a Post-Doctoral Researcher at the Rosario Chemistry Institute (CONICET-UNR) from April 2010 to March 2012. His extensive tenure as a Teaching Assistant in Pharmacognosy at UNR from May 2005 to September 2018 underscores his dedication to both research and education in the field of organic chemistry and pharmaceutical sciences.

Research Interest

Dr. Mario Oscar Salazar’s research interests are deeply rooted in organic chemistry, particularly focusing on the chemistry of natural products and enzyme inhibition. His work spans various aspects of chemical modification of natural extracts, including sulfonylation, halogenations, and thiocyanation, aimed at altering their molecular diversity and enhancing biological activities. He is particularly adept in employing analytical techniques such as NMR spectroscopy, HPLC-UV, GC-MS, and HPLC-HRMS for the characterization and analysis of complex mixtures. Dr. Salazar’s research also extends to effect-directed analysis and the development of innovative methods for the identification and evaluation of bioactive compounds. His contributions significantly advance the understanding and application of organic chemistry in pharmaceutical development and environmental science.

Award and Honors

Dr. Mario Oscar Salazar has garnered notable recognition and honors throughout his career for his contributions to the field of organic chemistry and pharmaceutical sciences. His achievements include being awarded the prestigious position of Principal Professor of Practice in Pharmacognosy at the Faculty of Biochemical and Pharmaceutical Sciences of the National University of Rosario (UNR). Additionally, his research has been widely acknowledged through numerous publications in high-impact journals and presentations at international conferences. Dr. Salazar’s scholarly work has earned him a respectable citation index and an h-index of 14, reflecting the significance and influence of his research contributions in the scientific community.

Research Skills

Dr. Mario Oscar Salazar is a highly skilled researcher with a broad range of expertise in organic chemistry and pharmaceutical sciences. His research skills are exemplified through proficiency in various analytical techniques essential for characterizing complex mixtures and bioactive compounds, including NMR spectroscopy, HPLC-UV, GC-MS, IR spectroscopy, and HPLC-HRMS. His specialization in chemical modification reactions such as sulfonylation, halogenations, and thiocyanation has significantly contributed to altering the molecular diversity and enhancing the biological activities of natural products. Dr. Salazar’s research also extends to studying enzyme inhibition mechanisms, particularly focusing on α-glucosidase and β-glucosidase inhibitors. He is adept at effect-directed analysis methods for identifying bioactive compounds and has a strong publication record in high-impact journals, alongside frequent presentations at international conferences. Collaborative by nature, Dr. Salazar has successfully partnered with prestigious institutions like CONICET and various research institutes, underscoring his commitment to advancing scientific knowledge and innovation in his field.

Publications

  1. Chemically engineered extracts: source of bioactive compounds
    • Authors: IA Ramallo, MO Salazar, L Mendez, RLE Furlan
    • Year: 2011
    • Citations: 85
    • Journal: Accounts of chemical research 44 (4), 241-250
  2. Modified β-Cyclodextrin Inclusion Complex to Improve the Physicochemical Properties of Albendazole. Complete In Vitro Evaluation and Characterization
    • Authors: A Garcia, D Leonardi, MO Salazar, MC Lamas
    • Year: 2014
    • Citations: 74
    • Journal: PloS one 9 (2), e88234
  3. A rapid TLC autographic method for the detection of glucosidase inhibitors
    • Authors: MO Salazar, RLE Furlan
    • Year: 2007
    • Citations: 73
    • Journal: Phytochemical Analysis: An International Journal of Plant Chemical and …
  4. Unsaturated long chain free fatty acids are input signals of the Salmonella enterica PhoP/PhoQ regulatory system
    • Authors: G Viarengo, MI Sciara, MO Salazar, PM Kieffer, RLE Furlán, EG Véscovi
    • Year: 2013
    • Citations: 48
    • Journal: Journal of Biological Chemistry 288 (31), 22346-22358
  5. Brominated extracts as source of bioactive compounds
    • Authors: L Méndez, MO Salazar, IA Ramallo, RLE Furlan
    • Year: 2011
    • Citations: 35
    • Journal: ACS combinatorial science 13 (2), 200-204
  6. Discovery of a β-glucosidase inhibitor from a chemically engineered extract prepared through sulfonylation
    • Authors: MO Salazar, O Micheloni, AM Escalante, RLE Furlan
    • Year: 2011
    • Citations: 31
    • Journal: Molecular diversity 15 (3), 713-719
  7. Metabolic Footprinting of a Clear Cell Renal Cell Carcinoma in Vitro Model for Human Kidney Cancer Detection
    • Authors: ME Knott, M Manzi, N Zabalegui, MO Salazar, LI Puricelli, ME Monge
    • Year: 2018
    • Citations: 29
    • Journal: Journal of proteome research 17 (11), 3877-3888
  8. Thin layer chromatography‐autography‐high resolution mass spectrometry analysis: accelerating the identification of acetylcholinesterase inhibitors
    • Authors: IA Ramallo, MO Salazar, RLE Furlan
    • Year: 2015
    • Citations: 28
    • Journal: Phytochemical analysis 26 (6), 404-412
  9. Chemically engineered extracts: Bioactivity alteration through sulfonylation
    • Authors: MO Salazar, IA Ramallo, O Micheloni, MG Sierra, RLE Furlan
    • Year: 2009
    • Citations: 28
    • Journal: Bioorganic & medicinal chemistry letters 19 (17), 5067-5070
  10. Effect-directed analysis in food by thin-layer chromatography assays
    • Authors: I Cabezudo, MO Salazar, IA Ramallo, RLE Furlan
    • Year: 2022
    • Citations: 26
    • Journal: Food Chemistry, 132937