Xiang Li | Environmental Science | Best Researcher Award | 13461

Prof Dr. Xiang Li | Environmental Science | Best Researcher Award 

Prof Dr. Xiang Li, Fudan University, China

Prof. Dr. Xiang Li is a distinguished Professor in the Department of Environmental Science and Engineering at Fudan University, Shanghai. With deep expertise in exhaled volatile organic compounds (VOCs), his pioneering research integrates breathomics, multi-omics analysis, and AI-based diagnostics to enable non-invasive early detection of diseases such as colorectal, gastric, and brain cancers. Prof. Li has led over 20 research projects, including several major grants from the National Natural Science Foundation of China, and has collaborated internationally with institutions like TROPOS and the University of Waterloo. His work bridges environmental health, analytical chemistry, and public health innovation, making significant strides in the field of precision diagnostics and air pollution impact assessment.

Author Profile

Google Scholar

🎓 Early Academic Pursuits

Prof. Dr. Xiang Li began his academic journey with a keen interest in environmental chemistry and health science. His early training laid a robust foundation in analytical chemistry and environmental sciences, which later expanded into interdisciplinary research addressing public health challenges. A pivotal chapter in his formative years was his post-doctoral fellowship at the University of Waterloo, Canada (2008–2009), where he worked under Prof. Janusz Pawliszyn, a world-renowned expert in sampling and analytical techniques. This experience not only honed his technical expertise but also shaped his future research direction toward human exposure science and non-invasive diagnostics.

👨‍🔬 Professional Endeavors

Prof. Xiang Li has been a central figure at Fudan University’s Department of Environmental Science and Engineering since 2006, ascending from Assistant Professor to Full Professor. His academic career is marked by consistent progression and international collaboration, including a visiting scholar stint at TROPOS, Germany (2014–2015), where he worked with Prof. Hartmut Herrmann on atmospheric chemistry.

Since 2016, he has held the position of Full Professor, leading a vibrant research group and mentoring graduate students, postdoctoral researchers, and early-career scholars. Over the years, he has secured more than 20 research projects, amassing over 15 million RMB in research funding, with sustained support from the National Natural Science Foundation of China (NSFC).

🔬 Contributions and Research Focus

At the core of Prof. Li’s research lies the application of exhaled volatile organic compounds (VOCs) in disease diagnostics, particularly in cancer screening. He has developed a high-fidelity breath sampling system and a high-resolution VOC detection platform, allowing for precise identification of metabolic changes associated with various diseases.

His integrated approach combines:

  • 🧪 Direct VOC observation

  • 🧬 Multi-omics analysis

  • 🤖 AI-driven modeling for multi-disease classification

His goal is to develop non-invasive, scalable, and clinically reliable diagnostic tools. These tools have proven especially valuable in early detection of diseases like colorectal, gastric, and brain cancers.

Additionally, Prof. Li’s group actively studies:

  • 🌍 Extreme climate events

  • 🔄 Environmental carbon cycling

  • ⚗️ Environmental analytical chemistry

  • ⚠️ Emerging pollutants

  • 🌫️ Air organic pollution exposure and health impacts

This interdisciplinary scope reinforces his ability to bridge environmental science and public health, a rare and valuable combination.

🏅 Accolades and Recognition

Prof. Li’s prolific research output and innovation have earned him recognition at both national and international levels. His successful acquisition of key NSFC grants, including international cooperative projects (e.g., Sino-German studies on ozone and PM interactions), highlights his leadership in global scientific networks.

Select prestigious projects include:

  • 🌬️ NSFC Key Project on Atmospheric Ozone & PM Regulation (2021–2023)

  • 💨 NSFC Project on Human Exhaled VOC Response to Air Pollution (2023–2026)

  • 🔥 NSFC Project on Oxidative Potential of Atmospheric Particles (2019–2022)

These projects underscore his ability to lead high-impact research teams that address urgent environmental and health-related challenges.

🌍 Impact and Influence

Prof. Li’s work has profound societal implications, especially in non-invasive disease diagnostics and air pollution exposure analysis. His contributions are helping to:

  • 💡 Advance early detection techniques for life-threatening diseases

  • 🧑‍⚕️ Reduce healthcare burden through preventive diagnostics

  • 🌱 Promote sustainable development by linking air quality and human health

  • 🧭 Inform policy decisions regarding environmental health risks

Moreover, by incorporating AI algorithms, he is at the forefront of next-generation precision medicine, moving beyond traditional boundaries of environmental science.

🧬 Legacy and Future Contributions

Prof. Dr. Xiang Li’s scientific legacy is already evident in the real-world applicability of his research. He is building a framework for large-scale clinical adoption of breath biopsy—a field that has the potential to revolutionize public health screening.

Looking ahead, his team is expected to:

  • Expand the breathomics database for multiple diseases

  • Enhance AI-based diagnostic models using global clinical datasets

  • Collaborate across countries for standardizing breath tests

  • Advocate for public health policies rooted in scientific evidence

✍️ Publication Top Notes


📘Pinning a complex dynamical network to its equilibrium

Author: X Li, X Wang, G Chen
Journal: IEEE Transactions on Circuits and Systems
Year: 2004

📘A Facile One-Pot Synthesis of a Two-Dimensional MoS2/Bi2S3 Composite Theranostic Nanosystem for Multi-Modality Tumor Imaging and Therapy.
Author: S Wang, X Li, Y Chen, X Cai, H Yao, W Gao, Y Zheng, X An, J Shi, …
Journal: Advanced Materials
Year: 2015

📘Spatial epidemiology of networked metapopulation: An overview

Author: L Wang, X Li
Journal: Chinese Science Bulletin
Year: 2014

Lanhui Zhang | Earth and Planetary Sciences | Best Researcher Award | 13425

Prof Dr Lanhui Zhang | Earth and Planetary Sciences | Best Researcher Award

Prof Dr Lanhui Zhang,Lanzhou university,China

Prof. Lanhui Zhang is nominated for the Best Researcher Award in recognition of her exceptional contributions to environmental science and hydrology. Her pioneering work in land surface-atmosphere interactions and the integration of AI into hydrological modeling has significantly advanced the field. With over 40 publications, leadership in national research projects, and recognized international service, Prof. Zhang exemplifies innovation, impact, and academic excellence.

 Profile

Scopus

🎓 Early Academic Pursuits

Prof. Lanhui Zhang embarked on her academic journey with a deep curiosity about atmospheric sciences and their interactions with the Earth’s surface. She pursued her higher education at Lanzhou University, one of China’s leading institutions in environmental and earth sciences. In 2011, she earned her Ph.D. in Meteorology, laying the foundation for her lifelong commitment to hydrological research and land-atmosphere dynamics.

👩‍🔬 Professional Endeavors

Prof. Zhang has risen through the academic ranks to become a Professor at the Key Laboratory of West China’s Environmental System (Ministry of Education), under the College of Earth and Environmental Sciences, Lanzhou University. She was promoted to this position in 2024, after years of research excellence and academic leadership.

Her professional career is defined by active leadership in nationally funded research projects, with three projects under her leadership and contributions to three others supported by the National Natural Science Foundation of China (NSFC). These projects tackle critical issues such as two-dimensional soil water movement, land use change, and the assimilation of remote sensing data into hydrological models—areas crucial for the environmental management of China’s vulnerable mountain ecosystems.

🧠 Contributions and Research Focus

Prof. Zhang’s primary research interests include land surface-atmosphere interactions, hydrological modeling, and the integration of artificial intelligence (AI) in environmental systems. Her work represents a forward-thinking fusion of physical science with machine learning, aimed at improving the precision and adaptability of environmental simulations.

🏅 Accolades and Recognition

Prof. Zhang’s research excellence has earned her national and international recognition. From 2016 to 2024, she served as the Executive Director of the Steering Committee for the IGU Water Sustainability Commission, showcasing her leadership on a global platform concerned with water sustainability and climate resilience.

🌍 Impact and Influence

Prof. Zhang’s research extends beyond academia. By applying her models to real-world challenges in water management, especially in China’s ecologically sensitive mountain regions, she has contributed to sustainable agricultural and water resource practices. Her integration of AI in hydrological modeling has sparked interest among younger researchers and provided a framework for interdisciplinary collaborations, bridging environmental science, computer modeling, and engineering. Her hybrid modeling techniques are being adapted and cited in multiple environmental modeling platforms, influencing both research direction and educational curricula across institutions.

🔮 Legacy and Future Contributions

Looking forward, Prof. Zhang is committed to expanding the frontier of intelligent environmental modeling. She envisions developing adaptive, AI-driven hydrological models that respond in real-time to environmental changes—tools that will be critical in an era of accelerating climate variability. She also plans to mentor young scientists, expand international collaborations, and contribute to national policy through science-based guidance on water and land sustainability. Prof. Zhang’s work stands as a legacy of scientific innovation, real-world relevance, and educational impact. Her ongoing contributions promise to shape the future of environmental modeling and water resource management both in China and internationally.

Publications Top Notes

The effect of heat treatment on the electrochemical properties of additive manufactured TC4 titanium alloy

Author: S., Che, Shuanghang, Y., Zhang, Yifei, Q., Yuan, Quan, L., Kong, Lu, J., Li, Jianzhong

Journal: International Journal of Electrochemical Science This link is disabled

Year: 2025

Thermodynamics study for Y2O3-Al2O3-SiO2 system: Emphasis on the equilibrium phase relationship at 1400℃ and 1600℃

Author: S., Li, Sheng, J., Shi, Junjie, D., Li, Dong, Y., Qiu, Yuchao, J., Li, Jianzhong

Journal: Journal of Alloys and CompoundsThis link is disabled

Year: 2025

Effect of 5wt% Fe3O4 addition on the phase equilibria of the CaO-SiO2-TiO2 system at 1400°C in air

Author: J., Shi, Junjie, C., Jiang, Chenglong, Y., Cao, Yifei, M., Yao, Maoxi, J., Li, Jianzhong

Journal: International Journal of Minerals, Metallurgy and Materials This link is disabled

Year: 2025

Guoying Yu | Environmental Health | Best Researcher Award | 13389

Prof. Guoying Yu | Environmental Health | Best Researcher Award 

Prof. Guoying Yu, Henan Normal University, China

Professor Guoying Yu is a distinguished biomedical scientist and professor at the College of Life Sciences, Henan Normal University, China. With a Ph.D. in Ecology from the Chinese Academy of Sciences and postdoctoral experience at Yale and the University of Pittsburgh, Dr. Yu has made significant contributions to lung biology, focusing on acute lung injury, pulmonary fibrosis, and thyroid hormone-based therapies. His innovative research has been published in top-tier journals like Nature Communications and Advanced Science, and he has secured major national and provincial research grants. A leader in translational medicine, Dr. Yu is widely respected for his impactful work, international collaborations, and dedication to advancing global health through scientific innovation.

Profile

Scopus

🏫 Early Academic Pursuits

Professor Guoying Yu’s journey into science began with a deep-rooted passion for biology and ecology. Born in China, he pursued his undergraduate studies at Henan Normal University, graduating in 1985 with a strong academic foundation in life sciences. Determined to explore ecological systems at a deeper level, he obtained his Master’s degree from Yunnan University in 1989. His unwavering commitment to academic excellence propelled him toward doctoral studies, and he earned his Ph.D. in Ecology in 1995 from the Chinese Academy of Sciences, China’s leading research institution.

Dr. Yu’s Ph.D. work laid a critical foundation in interdisciplinary environmental biology, a focus that later expanded into biomedical research. His academic brilliance and research discipline were evident from these formative years, building a strong base for his future endeavors.

👨‍🔬 Professional Endeavors

After receiving his Ph.D., Dr. Yu broadened his horizons through prestigious postdoctoral fellowships at the University of Pittsburgh (USA) and the Chinese Academy of Sciences. His research during this period focused on biomedical applications of molecular ecology, marking his transition into translational and clinical research.

Over the years, he has held esteemed research and academic positions at globally recognized institutions including Yale University, University of Pittsburgh, and Chinese academic universities. Currently, Dr. Yu is a Professor at the College of Life Sciences at Henan Normal University, where he leads critical research in lung injury, pulmonary fibrosis, and drug development.

His career is characterized by a fusion of academic rigor and innovation, with a particular focus on diseases that have significant public health impacts.

🔬 Contributions and Research Focus

Professor Yu’s research spans molecular biology, immunology, pulmonary disease, and translational medicine. A notable area of focus has been his exploration of thyroid hormone analogs, especially GC-1, for the treatment of acute lung injury and pulmonary fibrosis. His findings have significantly contributed to the non-steroidal therapeutic approach to lung repair.

Some of his groundbreaking work includes:

  • The TRβ/KLF2/CEBPA axis, which enhances alveolar repair by guiding alveolar type 2 to type 1 cell differentiation.

  • The inhibition of macrophage inflammasomes to control cytokine storms and lung injury.

  • The identification of MMP19 from endothelial cells as a critical contributor to pulmonary fibrosis.

His work integrates molecular mechanisms with clinical application and has been published in top-tier journals such as Nature Communications, Advanced Science, Theranostics, and Cell Communication and Signaling.

🏅 Accolades and Recognition

Dr. Yu’s research excellence has earned him national and provincial funding awards from:

  • National Key Research and Development Program (2020–2023) – ¥2.85 million

  • Zhongyuan Foreign Expert Program (2020–2021) – ¥220,000

  • Henan Major Scientific and Technological Projects (2024–2026) – ¥2 million

He is recognized as a leading talent in Henan Province, and has been entrusted with managing high-impact biomedical research projects. His leadership roles in academic and governmental collaborations underscore his credibility as a national research leader.

🌍 Impact and Influence

Dr. Yu’s influence transcends borders. His international collaborations, particularly with institutions in the United States such as Yale and Pittsburgh, have facilitated the global exchange of knowledge. His work on post-COVID-19 lung pathology, innovative drug discovery, and inflammation control strategies have directly impacted public health strategies and pharmaceutical development in China.

With over 1,300 citations and increasing global interest in his work, Dr. Yu is regarded as an authority in pulmonary disease mechanisms, especially within the translational research community.

🌱 Legacy and Future Contributions

Professor Guoying Yu’s legacy lies in his ability to bridge scientific innovation with practical application. As a mentor, he continues to shape the next generation of scientists at Henan Normal University. As a scientific leader, his vision for the future includes:

  • Developing affordable therapies for lung diseases in low- and middle-income countries.

  • Enhancing China’s biomedical innovation pipeline through international cooperation.

  • Advancing precision medicine approaches tailored to complex respiratory conditions.

His ongoing work positions him not only as a trailblazer in translational lung biology but also as a guiding force for future biomedical innovation in Asia and beyond.

Publication Top Notes

Author: Z., Li, Zhongzheng, M., Zhang, Mengke, Y., Zhang, Yujie, G., Yu, Guoying, L., Wang, Lan

Journal: Epigenetics and Chromatin

Year: 2025

Author: H., Lian, Hui, Y., Zhang, Yujie, Z., Zhu, Zhao, L., Wang, Lan, G., Yu, Guoying

Journal: Life Science Alliance

Year: 2025

Author: X., Pan, Xin, L., Wang, Lan, J., Yang, Juntang, I.O., Rosas, Ivan O., G., Yu, Guoying

Journal: Nature Communications

Year: 2024

Xiaoshu sun | Environmental economics | Best Researcher Award | 13371

Ms. Xiaoshu sun | Environmental economics | Best Researcher Award 

Ms. Xiaoshu sun, Northeastern University, China

Ms. Xiaoshu Sun is currently pursuing her Ph.D. in Applied Economics at Northeastern University, Shenyang, China. Her research focuses on the digital economy, green economy, and income distribution. She has published multiple papers in reputed journals including SSCI, SCI, and Scopus-indexed publications. Her recent work explores the impact of digital technology on rural-urban income disparity and the coupling between digital transformation and green manufacturing efficiency in China. Using advanced models like the non-expected SBM-DEM, she has contributed valuable insights into regional development dynamics. Ms. Sun also serves on the editorial board of Asia Pacific Economic and Management Review.

Profile

Orcid

🎓 Early Academic Pursuits

Ms. Xiaoshu Sun began her academic journey with a strong foundation in economics, demonstrating a keen interest in understanding the evolving dynamics of modern economies. Her passion for exploring the intersections between technology, sustainability, and economic equity led her to pursue a Ph.D. in Applied Economics at Northeastern University, Shenyang, China. From early in her academic career, she was drawn to complex issues such as income distribution, the digital economy, and environmental sustainability. This solid academic base has equipped her with both the theoretical knowledge and practical skills necessary to tackle pressing global economic challenges.

💼 Professional Endeavors

Though currently a Ph.D. student, Ms. Sun’s professional contributions are already noteworthy. She has authored and co-authored several research papers published in internationally recognized journals such as Economic Research-Ekonomska Istrazivanja, Journal of Environmental Planning and Management, Frontiers in Environmental Science, and PLOS ONE. These publications have addressed vital questions surrounding economic modernization, particularly in the context of China’s rapid digital transformation and green development initiatives.

In addition to her academic publishing, Ms. Sun holds an editorial appointment with the Asia Pacific Economic and Management Review, where she contributes to the peer review and knowledge dissemination processes. Her work reflects a deep commitment to advancing scholarly dialogue in her fields of interest.

🧠 Contributions and Research Focus

Ms. Xiaoshu Sun’s research is primarily focused on three interconnected areas:

  • Digital Economy

  • Green Economy

  • Income Distribution

One of her most significant contributions involves using the non-expected SBM-DEM model to measure green manufacturing efficiency across 274 prefecture-level cities in China. This empirical study has revealed that the coupling coordination between digitalization and green efficiency remains relatively low, with stark regional disparities. Notably, her findings emphasize that the digital economy exerts a positive “radiation effect”, meaning it not only boosts green manufacturing efficiency within a region but also benefits neighboring areas through technological spillovers. She further discovered that industrial agglomeration serves as a partial mediating factor in this process, highlighting the importance of industrial clustering in enhancing regional development.

Her published works reflect a strong methodological foundation, including the application of Spatial Durbin Modelling to analyze spatial effects and interdependencies. These insights are vital for policymakers aiming to bridge the digital divide and promote environmentally sustainable industrial growth.

🏆 Accolades and Recognition

While Ms. Sun is still in the early stages of her professional journey, her scholarly output has already earned international attention through publications in SSCI, SCI, and Scopus-indexed journals. This achievement is significant, especially for a Ph.D. candidate, and points to the rigorous quality and relevance of her work. Furthermore, her appointment to the editorial board of an academic journal at this stage of her career is a testament to her growing recognition within the academic community.

🌍 Impact and Influence

Ms. Sun’s research has direct implications for economic policy, urban planning, and sustainable development in China and other emerging economies. By highlighting the nuanced interactions between digital innovation and green growth, she offers a valuable roadmap for achieving sustainable economic modernization. Her findings advocate for targeted policy interventions to enhance digital infrastructure, foster industrial clusters, and balance regional development.

Moreover, her work contributes to global academic conversations around the UN Sustainable Development Goals (SDGs), particularly in areas such as industry innovation (SDG 9), reduced inequalities (SDG 10), and sustainable cities and communities (SDG 11).

🌟 Legacy and Future Contributions

Looking ahead, Ms. Xiaoshu Sun is poised to become a leading scholar in applied economics with a particular focus on the digital-green transition. As she progresses in her academic career, she is likely to engage in policy consultancy, interdisciplinary collaborations, and potentially take on advisory roles in governmental or international organizations. Her ability to bridge the gap between theoretical research and real-world application will be instrumental in shaping the next generation of sustainable economic policies.

With her proven analytical skills, dedication to sustainability, and commitment to academic excellence, Ms. Sun is set to leave a lasting impact not only in China but also on the broader global stage.

Publication Top Notes

ContributorsXiaoshu Sun; Wanyu Zhang; Xianming Kuang
Journal: Frontiers in Environmental Science
Year: 2024
Journal: Economic Research-Ekonomska Istraživanja
Year: 2023
ContributorsXiaoshu Sun; Jie Tao; Xianming Kuang
Journal: Environmental Planning and Management
Year: 2023

Lili Chen | Environmental Science | Best Researcher Award

Dr. Lili Chen | Environmental Science | Best Researcher Award

Dr. Lili Chen, Chang’an University, China

Dr. Lili Chen, a Ph.D. candidate at Chang’an University, specializes in vegetation and climate change research. She earned her B.S. in geomatics engineering from Lanzhou University of Technology in 2022. Her research focuses on analyzing spatiotemporal vegetation changes in the northern foothills of the Qinling Mountains, incorporating climate time-lag effects and human activity assessments. Her study highlights the dominant influence of climate change on vegetation dynamics, providing insights for ecological restoration strategies. She has published in Environmental Research and aims to contribute to sustainable environmental management.

Profile

Google Scholar

Early Academic Pursuits 🎓

Lili Chen’s academic journey began with a strong foundation in geomatics engineering. She earned her Bachelor of Science (B.S.) degree from Lanzhou University of Technology in 2022, where she displayed exceptional analytical skills and a keen interest in environmental studies. Her undergraduate years were marked by rigorous coursework, hands-on research projects, and an unwavering passion for understanding the intricate relationship between the environment and technology. During this period, she developed a profound appreciation for the dynamic interplay between vegetation and climate, which would later become the cornerstone of her research.

Following her undergraduate studies, Lili Chen pursued a Ph.D. at Chang’an University, specializing in surveying and mapping. Her doctoral research is deeply focused on analyzing vegetation dynamics in response to climate change and human activities. Her early academic pursuits laid the groundwork for her innovative approach to assessing environmental sustainability.

Professional Endeavors 🌍

As a dedicated researcher at Chang’an University, Lili Chen has actively contributed to the scientific community through her meticulous study of vegetation changes. Her expertise lies in employing cutting-edge methodologies such as the Kernel Normalized Difference Vegetation Index (kNDVI) to assess ecological transformations. By integrating climate time-lag effects and human activity influences into her models, she provides a holistic perspective on environmental fluctuations.

Despite being at an early stage in her professional career, Lili has demonstrated an exceptional ability to translate theoretical concepts into practical insights. She has collaborated with faculty members, engaged in data-driven analysis, and participated in academic discussions aimed at shaping sustainable ecological policies. Her research has gained recognition for its methodological rigor and its potential to influence environmental conservation strategies.

Contributions and Research Focus 🌿

Lili Chen’s research primarily revolves around vegetation and climate change. Her notable project, “Spatiotemporal Changes of Vegetation in the Northern Foothills of the Qinling Mountains Based on kNDVI Considering Climate Time-Lag Effects and Human Activities,” is a groundbreaking study that spans over three decades (1986–2022). In this research, she meticulously examines the extent to which climate change and human interventions have impacted regional vegetation.

By incorporating advanced statistical models, multiple regression residuals methods, and remote sensing techniques, she has successfully quantified the relative influence of climate factors versus anthropogenic activities. Her findings indicate that climate change plays a more dominant role in shaping vegetation patterns than human-induced factors. This revelation is crucial for policymakers and environmentalists seeking effective strategies for ecological restoration.

Additionally, her work emphasizes the significance of time-lag effects in vegetation responses, offering new perspectives on long-term environmental planning. Her contributions extend beyond academia, as her research provides actionable insights for sustainable development, land use management, and biodiversity conservation.

Accolades and Recognition 🏆

Lili Chen’s scholarly contributions have earned her a nomination for the Best Researcher Award in the International Research Awards. Her research publication in Environmental Research, a prestigious SCI-indexed journal, underscores the scientific merit of her work.

Though early in her career, her dedication and intellectual rigor have been acknowledged by peers and mentors alike. Her research has also been cited in academic discussions on environmental sustainability, reinforcing her growing influence in the field of ecological studies. While she has not yet received patents or editorial appointments, her research trajectory suggests that such accomplishments are well within her reach.

Publication Top Notes

Highly transparent, underwater self-healing, and ionic conductive elastomer based on multivalent ion–dipole interactions

Author: Y Zhang, M Li, B Qin, L Chen, Y Liu, X Zhang, C Wang
Journal: Chemistry of Materials
Year: 2020

Superstretchable, yet stiff, fatigue-resistant ligament-like elastomers

Author: M Li, L Chen, Y Li, X Dai, Z Jin, Y Zhang, W Feng, LT Yan, Y Cao, C Wang
Journal: Nature Communications
Year: 2022

A highly robust amphibious soft robot with imperceptibility based on a water‐stable and self‐healing ionic conductor

Author: Z Cheng, W Feng, Y Zhang, L Sun, Y Liu, L Chen, C Wang
Journal: Advanced Materials
Year: 2023