Laleh Kalankesh | Environmental Science | Women Researcher Award

Assist Prof Dr. Laleh Kalankesh | Environmental Science | Women Researcher Award 

Medical science university | Iran

Dr. Laleh R. Kalankesh is an accomplished environmental health engineer and academic whose research integrates environmental engineering, public health, and environmental epidemiology, with a strong emphasis on water quality, pollution control, and human health risk assessment. She is currently an Assistant Professor of Environmental Health Sciences at Gonabad University of Medical Sciences, Iran, where she is actively involved in teaching, mentoring postgraduate students, and leading multidisciplinary research projects addressing critical environmental and health challenges in Iran and comparable arid and semi-arid regions. Dr. Kalankesh earned her PhD in Environmental Health Engineering from Mazandaran University of Medical Sciences, where her doctoral research focused on monitoring disinfection by-products (DBPs), including trihalomethanes (THMs) and haloacetic acids (HAAs), in surface water, groundwater, and drinking water distribution networks. Her work also advanced membrane technology by developing graphene oxide–modified polyamide nanofiltration membranes to enhance the removal of DBPs and total organic carbon (TOC). This research built on her earlier MSc and BSc training in environmental health engineering, with a strong foundation in nanoparticle applications for wastewater treatment and heavy metal removal. Her research portfolio spans water and wastewater treatment, membrane processes, nanomaterials, air pollution, and environmental epidemiology. She has made notable contributions to understanding DBP formation and health risks, desalination using microbial desalination cells, photocatalytic degradation of organic pollutants, and the application of nanoparticles and composites as bactericides and adsorbents. In parallel, her epidemiological studies examine the health impacts of air pollution, meteorological factors, and socio-environmental inequalities, including contributions to large-scale Global Burden of Disease (GBD) studies published in leading journals such as The Lancet Planetary Health and The Lancet Global Health. Dr. Kalankesh has authored 45 peer-reviewed publications, holds an h-index of 21, and is recognized among the world’s top 2% scientists (2025). She has served as principal investigator on numerous nationally funded research projects and is an active peer reviewer for international journals. Her innovative capacity is further reflected in a patented portable device for sterilizing fruits and vegetables. Through her interdisciplinary research and academic leadership, Dr. Kalankesh continues to contribute significantly to advancing environmental health science and evidence-based policy for sustainable development and public health protection.

Citation Metrics (Google Scholar)

9000
8000
7000
6000
5000
4000
3000
2000
1000
500
400
300
200
100
50
0

Citations
8343

Documents
57

h-index
22

Citations

Documents

h-index

View Google Scholar Profile     View Scopus Profile

Featured Publications

Dongdong Wang | Environmental Science | Research Excellence Award

Prof Dr. Dongdong Wang | Environmental Science | Research Excellence Award

University of Science and Technology of China | China

Prof. Dr. Dongdong Wang is a distinguished materials scientist and interdisciplinary researcher whose work bridges chemistry, nanotechnology, biology, and medicine, with a strong focus on nanozyme engineering and metal–organic framework (MOF)–derived functional materials for biomedical applications. He received his Bachelor of Science degree from Lanzhou University and earned his Ph.D. in 2018 from the University of Science and Technology of China (USTC). Following his doctoral training, he conducted postdoctoral research at Nanyang Technological University from 2018 to 2022, where he further expanded his expertise in advanced nanomaterials and catalytic systems. In June 2022, Prof. Wang joined USTC as a Professor and Principal Investigator, establishing an independent and rapidly growing research program. Prof. Wang has authored more than 80 high-impact research articles published in internationally leading journals such as Accounts of Chemical Research, Nature Communications, Angewandte Chemie, Advanced Materials, Chem, ACS Nano, and Advanced Science. His scholarly contributions demonstrate both depth and breadth, ranging from fundamental mechanistic studies to application-oriented innovations. His research is supported by competitive funding, including grants from the National Natural Science Foundation of China and the Anhui Provincial Natural Science Foundation, reflecting strong national recognition of his scientific leadership. In 2025, he was selected as a JMCB Emerging Investigators, further underscoring his rising international profile. The core of Prof. Wang’s research lies in the rational design and synthesis of porous nanozymes, single-atom nanozymes, and MOF-based hybrid materials. He systematically investigates their enzymatic catalytic mechanisms and explores their applications in tumor imaging, diagnosis, therapy, antibacterial treatment, and immunomodulation. A defining feature of his work is the integration of reactive oxygen species (ROS)–based catalytic therapy with modulation of the tumor microenvironment, providing innovative strategies for precision theranostics. Additionally, he explores the use of microorganisms and microbially synthesized nanomaterials in catalysis and tumor immunotherapy, opening new frontiers at the interface of biology and materials science. Beyond research outputs, Prof. Wang plays an active role in the scientific community as a guest editor for leading journals including Molecules, Materials, and Frontiers in Chemistry, and serves as an invited independent reviewer for top-tier journals such as Nature Communications, Journal of the American Chemical Society, ACS Nano, and Biomaterials. His achievements have been recognized through multiple prestigious honors, including the BaoGang Education Scholarship and the National Graduate Scholarship. Overall, Prof. Dongdong Wang’s research profile reflects originality, interdisciplinary impact, and sustained excellence, making him a strong candidate for the Research Excellence Award.

Citation Metrics (Scopus)

7000
6000
5000
4000
3000
2000
1000
  500
  400
  300
  200
  100
      0

Citations
6711

Documents
95

h-index
41

Citations

Documents

h-index

View Scopus Profile
      View Orcid Profile

Featured Publications


Elucidating the Critical Role of Water in Selective Hydrogenation of N-heterocycles on a Cobalt Catalyst

– Angewandte Chemie International EditionThis link is disabled., 2025

Heng Liu | Environmental and Sustainable Materials | Research Excellence Award

Mr. Heng Liu | Environmental and Sustainable Materials | Research Excellence Award

Qingdao University of Science and Technology | China

Prof. Heng Liu is an accomplished materials scientist and professor at Qingdao University of Science and Technology, widely recognized for his significant contributions to organometallic catalysis and polymer chemistry. He earned his Ph.D. in 2015 from the Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences (CAS), followed by productive postdoctoral research at the Technion – Israel Institute of Technology between 2015 and 2017. Upon returning to China, he served as an associate professor at CIAC before joining Qingdao University of Science and Technology as a full professor in 2020. Throughout his career, Prof. Liu has built an impressive portfolio of research achievements that reflect his scientific rigor, innovation, and leadership in advancing olefin and diene polymerization technologies. His research primarily focuses on the development of high-efficiency organometallic catalysts, the functionalization of polymers, and performance enhancement strategies for synthetic rubber materials—areas that hold major industrial relevance in the rubber, plastic, and advanced materials sectors. Prof. Liu has published 63 high-impact journal articles in prestigious publications such as Advanced Functional Materials, ACS Catalysis, Coordination Chemistry Reviews, Macromolecules, and other leading SCI-indexed platforms. His strong publication record is supported by a robust citation footprint in global scientific databases, reflecting the wide impact and recognition of his work within the research community. He has successfully led and participated in multiple funded research projects, including major grants from the National Natural Science Foundation of China (52573115, 22071236, 21801236), the Shandong Province Natural Science Foundation (ZR2024ME117), and the Taishan Scholar Foundation (202211165), demonstrating his capability to secure competitive funding for frontier research. Beyond academic projects, Prof. Liu has completed six consultancy and industry collaborations, reinforcing the practical applicability of his scientific innovations. He holds 18 patents, underscoring his commitment to translating research outcomes into technological advancements. His editorial contributions include serving on the editorial boards of Frontiers in Chemistry and China Synthetic Rubber Industry, where he supports scholarly communication and peer review in his field. Prof. Liu’s work is strengthened by active collaborations with researchers across institutions and countries, contributing to scientific progress through interdisciplinary engagement. With expertise spanning catalysis, polymer design, and advanced material fabrication, Prof. Liu continues to make substantial contributions to both fundamental science and industrial technology. His achievements, leadership, and innovation position him as a distinguished candidate for the Research Excellence Award.

Profile: Scopus | Orcid

Featured Publications

Polymer Chemistry (2025)

Zhang, H., Zhang, X., Zheng, H., Wang, F., Wei, X., Zhang, X., & Liu, H. (2025). Synthesis of α,ω-end hetero-functionalized polyisoprene via neodymium-mediated coordinative chain transfer polymerization. Polymer Chemistry. https://doi.org/10.1039/D4PY01452A

Journal of Applied Polymer Science (2025 – Nov 05)

Zheng, H., Zhang, H., Zhao, W., Wang, F., Zhang, X., & Liu, H. (2025). Controllable preparation of hydroxyl-terminated liquid polydiene rubber featuring high 1,4-content by neodymium-mediated coordinative chain transfer polymerizations strategy. Journal of Applied Polymer Science. https://doi.org/10.1002/app.57602

Journal of Applied Polymer Science (2025 – Mar 10)

Li, X., Zhang, X., Wang, F., Liu, W., Zhang, X., & Liu, H. (2025). Neodymium-mediated coordinative chain transfer homopolymerization of bio-based myrcene and copolymerization with butadiene and isoprene. Journal of Applied Polymer Science. https://doi.org/10.1002/app.56557

Macromolecules (2025 – Feb 25)

Wang, X., Ma, L., Dong, B., Zhang, C., Zhang, X., & Liu, H. (2025). Axial anagostic interaction in α-diimine nickel catalysts: An ultraefficient occupation strategy in suppressing associative chain transfers to achieve UHMWPEs. Macromolecules, 58(?), pages pending. https://doi.org/10.1021/acs.macromol.4c03244

Molecular Catalysis (2024)

Liu, X., Yang, Q., Zhang, C., Zhang, X., & Liu, H. (2024). 3,4-selective polymerization of isoprene by iron-based system: The key role of borate salts for enhancing catalytic activities and broadening 1,10-phenanthroline ligand scope. Molecular Catalysis, 114082. https://doi.org/10.1016/j.mcat.2024.114082

SSRN Preprint (2024)

Liu, H., Liu, X., Zhang, C., Yang, Q., & Zhang, X. (2024). 3,4-selective polymerization of isoprene by iron-based system: The key role of borate salts for enhancing catalytic activities and broadening 1,10-phenanthroline ligand scope [Preprint]. SSRN. https://doi.org/10.2139/ssrn.4690393

 

Shimelash Molla Kassaye | Environmental Science | Editorial Board Member

Dr. Shimelash Molla Kassaye | Environmental Science | Editorial Board Member

Mattu University | Ethiopia

Dr. Shimelash Molla Kassaye is a highly dedicated scholar and researcher specializing in Hydrology and Water Resources Management, with an extensive academic background and a strong record of scientific contributions in the field of environmental and water sciences. He currently serves as an Assistant Professor at Mattu University, Ethiopia, where he continues to advance research and teaching in hydrology, climate change, and watershed management. His professional journey reflects consistent excellence and commitment to solving pressing environmental and water-related challenges affecting the African continent. Dr. Kassaye earned his Ph.D. in Water Management (Hydrology and Water Resources Management) from the African Centre of Excellence in Water Management (ACEWM) at Addis Ababa University in 2024. His doctoral research, titled “Evaluating the Hydrological Dynamics under Land Use/Cover and Climate Change in the Baro River Basin, Ethiopia,” focused on understanding the complex interactions between climate variability, land use change, and hydrological responses in one of Ethiopia’s key river basins. His research offers vital insights into sustainable water resource management and policy planning under changing climatic conditions. Prior to his Ph.D., he obtained an M.Sc. in Hydraulic Engineering from Jimma University in 2017 with an outstanding CGPA of 3.88/4.00 and a B.Sc. in Hydraulic and Water Resources Engineering from Arbaminch University in 2011. His professional experience spans over a decade of teaching, research, and academic service. Before assuming his current position, Dr. Kassaye worked as a Researcher and Lecturer at Mattu University (2014–2021) and as a Graduate Assistant at Arbaminch University (2012–2014). Through these roles, he has contributed significantly to the training of young engineers and scientists, supervising research projects, and integrating innovative technologies into water resource education and management practices. Dr. Kassaye’s research expertise covers a broad range of topics, including hydrologic modeling, climate change and variability, drought monitoring and prediction, integrated watershed management, natural resource management, and hydrometeorological risk assessment. His multidisciplinary approach, combining remote sensing, geospatial analysis, and hydrological modeling, enables comprehensive assessments of environmental systems under stress from both natural and anthropogenic factors. He has published multiple peer-reviewed scientific papers in high-impact international journals such as Water, Environmental Earth Sciences, Environmental Systems Research, and Earth. His publications have explored critical themes such as the sensitivity of meteorological dynamics to catchment variability, the integrated impact of land use and topography on hydrological extremes, and the quantification of climate change effects on streamflow dynamics. His academic excellence, combined with practical expertise and a strong publication record, positions him as a leading early-career researcher contributing to Ethiopia’s and Africa’s sustainable water resource management efforts. His dedication to advancing hydrological science underscores his commitment to building climate resilience and fostering sustainable development in vulnerable regions.

Profiles: Orcid | Google Scholar

Featured Publications

Kassaye, S. M., Tadesse, T., Tegegne, G., & Hordofa, A. T. (2024). Quantifying the climate change impacts on the magnitude and timing of hydrological extremes in the Baro River Basin, Ethiopia. Environmental Systems Research, 13(1), 1–15.

Belay, H., Melesse, A. M., Tegegne, G., & Kassaye, S. M. (2025). Flood inundation mapping using the Google Earth Engine and HEC-RAS under land use/land cover and climate changes in the Gumara Watershed, Upper Blue Nile Basin, Ethiopia. Remote Sensing, 17(7), 1283.

Malede, D. A., Elumalai, V., Andualem, T. G., Mekonnen, Y. G., Yibeltal, M., Kassaye, S. M., & others. (2025). Understanding flood and drought extremes under a changing climate in the Blue Nile Basin: A review. Environmental and Sustainability Indicators, 100638.

Kassaye, S. M., Tadesse, T., & Tegegne, G. (2024). Quantifying the climate change impacts on the magnitude and timing of hydrological extremes in the Baro River Basin, Ethiopia. Environmental Systems Research, 13(2).

Kassaye, S. M., Tadesse, T., Tegegne, G., Hordofa, A. T., & Malede, D. A. (2024). Relative and combined impacts of climate and land use/cover change for the streamflow variability in the Baro River Basin (BRB). Earth, 5(2), 149–168.

Kassaye, S. M., Tadesse, T., Tegegne, G., & Tadesse, K. E. (2022). The sensitivity of meteorological dynamics to the variability in catchment characteristics. Water, 14(22), 3776.

Kassaye, S. M., Tadesse, T., Tegegne, G., & Hordofa, A. T. (2024). Integrated impact of land use/cover and topography on hydrological extremes in the Baro River Basin. Environmental Earth Sciences, 83(2), 49.

Kassaye, S. M., Ebissa, T. N., Gutema, B. G., & Gurmesa, G. T. (2020). Site selection and design of mini hydropower plant for rural electrification in Keber River. American Journal of Electrical Power and Energy Systems, 9(5), 82–96.

Ebissa, T. N., Kassaye, S. M., & Malede, D. A. (2024). Hydrological response to climate change in Baro Basin, Ethiopia, using representative concentration pathway scenarios. Environmental Systems Research, 13(1), 42.

Waheed, A., Kousar, S., Khan, M. I., & Fischer, T. B. (2025). Environmental and Sustainability Indicators. Environmental and Sustainability Indicators.

Minglu Zhang | Environmental Science | Best Researcher Award

Prof. Dr. Minglu Zhang | Environmental Science | Best Researcher Award

Beijing University of Technology and Business | China

Dr. Minglu Zhang is currently a professor in the Department of Environmental Engineering at Beijing Technology and Business University, having previously served as associate professor (2015–2019) and lecturer (2012–2015) in the same discipline. After completing a postdoctoral appointment in the School of Environment at Tsinghua University (2010–2012) and earlier research experience at the University of California, Irvine (2008–2010), he has built a distinguished career in environmental microbiology and water systems research. His primary research interests encompass microbial ecology and molecular microbiology in water and solid waste systems, with a special focus on antibiotic-resistant bacteria and resistance genes in drinking water systems. Dr. Zhang has led and contributed to several major national research projects. For example, he is the principal investigator on the “Typing and Traceability System for VBNC State Pathogens of Major Digestive Tract at Ports” (2022–2025, National Key R&D Program), as well as on the “Technology and Equipment Development for Monitoring, Early Warning and Purification of Malodorous Gas Emissions under Classified Collection of Domestic Waste” (2020–2024, National Key R&D Program). Earlier, he also led work on the distribution and migration of antibiotic resistance genes at multi-phase interfaces in drinking water distribution systems (2015–2017, National Natural Science Foundation of China). To date, Dr. Zhang has authored or co-authored numerous peer-reviewed scientific publications. According to his ResearchGate profile, his publication count is 79, with more than 1,300 citations. His academic impact is further reflected by his h-index, which is listed as 5 on the SciSpace author profile. Among his representative works are: “Metagenomics analysis of antibiotic resistance genes, bacterial community and virulence factor genes of fouled filters and effluents from household water purifiers in drinking water” (Science of the Total Environment, 2023); “Global transcriptional analysis for molecular responses of Alicyclobacillus acidoterrestris spores in drinking water after low- and medium-pressure UV irradiation” (Journal of Hazardous Materials, 2024); and “Highly efficient degradation of ethanol, acetaldehyde, and ethyl acetate removal by bio-trickling filter reactors” (Process Safety and Environmental Protection, 2024). These works illustrate how he combines high-throughput molecular methods (e.g. metagenomics, transcriptional profiling) with applied engineering systems (e.g. drinking water treatment, gas emission purification) to address critical environmental microbiology challenges. Over the course of his career, Dr. Zhang has established himself as a leading scholar at the intersection of environmental engineering and microbial molecular ecology. His work not only advances fundamental understanding of microbial community dynamics and resistance gene behavior in engineered systems, but also yields practical solutions for water quality protection, public health, and waste management. His contributions are broadly recognized in China’s environmental research community and are increasingly cited in the international literature.

Profiles: Orcid

Featured Publications

Zhang, M., et al. (2025). Adsorption and desorption characteristics of nano-metal-modified zeolite for removal of oxygenated volatile organic compounds. Coatings, 15(10), 1206. https://doi.org/10.3390/coatings15101206

Jiang, J., Zhang, Y., Cui, R., Ren, L., Zhang, M., & Wang, Y. (2023). Effects of two different proportions of microbial formulations on microbial communities in kitchen waste composting. Microorganisms, 11(10), 2605. https://doi.org/10.3390/microorganisms11102605

Wang, Y., Cui, R., Jiang, H., Bai, M., Zhang, M., & Ren, L. (2022). Removal of hydrogen sulfide and ammonia using a biotrickling filter packed with modified composite filler. Processes, 10(10), 2016. https://doi.org/10.3390/pr10102016

Xu, S., Zhang, L., Lin, K., Bai, M., Wang, Y., Xu, M., Zhang, M., Zhang, C., Shi, Y., & Zhou, H. (2021). Effects of light and water disturbance on the growth of Microcystis aeruginosa and the release of algal toxins. Water Environment Research, 93, 2958–2970. https://doi.org/10.1002/wer.1644

Naseraldeen Asadalla | Environmental Science | Best Researcher Award

Naseraldeen Asadalla | Environmental Science | Best Researcher Award

Kuwait Institute for Scientific Research | Kuwait

Dr. Naseraldeen Asadalla’s research has focused on arid land ecology, invasive alien species, ecosystem restoration, and biodiversity assessment in the Arabian Peninsula and the GCC region. He has developed specialized expertise in species distribution modeling (MaxEnt), remote sensing, ecological indicators, and machine learning-based environmental data analysis. His Ph.D. research examined the dynamics of alien bird species, particularly the Common Myna in Bahrain, providing foundational insights into biodiversity trends in urban ecosystems. Building on this work, his recent research has concentrated on ecological modeling of plant and animal species in desert environments, with a focus on the influence of abiotic factors such as precipitation and dust storms on species distribution and habitat suitability. Dr. Asadalla has authored and co-authored over 12 peer-reviewed scientific publications in reputable journals including Restoration Ecology, Environmental Monitoring and Assessment, and the Journal of Arid Environments. His work has received over 185 citations (as of September 2025) and he holds an h-index of 7 (Scopus). His research has directly contributed to regional conservation strategies, such as the identification of green water zones using annual plants as ecological indicators and the development of habitat suitability models for native desert flora and vulnerable species like the Asian Houbara Bustard. In addition to his academic contributions, he is an active member of multi-disciplinary research teams at the Kuwait Institute for Scientific Research (KISR), playing a key role in nationally funded projects and the formulation of regional environmental policies. Dr. Asadalla continues to pursue applied ecological research by integrating remote sensing tools with conservation science to address environmental challenges associated with climate change, species displacement, and urban expansion across the Arabian Peninsula.

Profiles: Scopus | Orcid

Featured Publications  

Asadalla, N. B. A., Abdullah, M., Gharabi, Y., Mohan, M., Al Naabi, S., Al Ali, Z., Al Hashash, N., Srinivasan, S., Al Awadhi, T., & Abulibdeh, A. (2024). Predictive modeling of green water availability: The role of annual plants as an ecological indicator in dryland ecosystems. Journal of Arid Environments, 223, 105179.

Asadalla, N. B. A., & Marafi, M. (2023). Overlooked Colotis phisadia (Godart, 1819) (Lepidoptera: Pieridae) – A new record for the butterfly fauna of Kuwait with remarks on host plant. Entomologist’s Monthly Magazine, 159(1), 66–72.

Asadalla, N. B. A., Abdullah, M. M., Gharabi, Y., Mohan, M., Al Naabi, S., Srinivasan, S., & Al Awadhi, T. (2022). The use of annual plants as ecological indicators to identify locations with high levels of green water in arid ecosystems using remote sensing and MaxEnt modeling. SSRN Electronic Journal.

Asadalla, N. B. A., Abdullah, M. M., Al-Ali, Z. M., & Abdullah, M. T. (2021). Vegetation restoration targeting approach to identify the optimum environmental conditions for the restoration of native desert plants using remote sensing and MaxEnt modeling. Restoration Ecology, 29(6), e13425.

Al-Ali, Z., Abdullah, M., Asadalla, N. B. A., & Gholoum, M. (2020). A comparative study of remote sensing classification methods for monitoring and assessing desert vegetation using a UAV-based multispectral sensor. Environmental Monitoring and Assessment, 192, Article 370.

Abdullah, M. M., Assi, A. T., & Asadalla, N. B. A. (2019). Integrated ecosystem sustainability approach: Toward a holistic system of thinking of managing arid ecosystems. Open Journal of Ecology, 9(11), 493–508.

Asadalla, N. B. A., Abido, M. S., Abahussain, A., & Shobrak, M. (2015). Assembly of optimum habitats for Asian Houbara Bustard (Chlamydotis macqueenii) in the Arabian Peninsula: The vegetation aspects. International Journal of Biodiversity, 2015, Article 925093.

Wenhao Pu | Renewable Energy | Excellence in Research Award

Assoc. Prof. Dr. Wenhao Pu | Renewable Energy | Excellence in Research Award

Nanjing University of Aeronautics and Astronautics | China

Dr. WenHao Pu is an Associate Professor at the College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics (NUAA), China. His research interests encompass dense gas-solid flows, computational fluid dynamics, numerical heat and mass transfer, waste heat utilization, solar thermal utilization, compression energy storage systems, and additive manufacturing heat exchange technologies. Dr. Pu has authored 85 publications, with his most recent work focusing on thermal characteristics of heat sinks with embedded phase change materials in triply periodic minimal surfaces, published in the International Journal of Thermal Sciences. His research contributions have been cited 1322 times, and he has an h-index of 1. These metrics reflect the early stage of his research career and the specialized nature of his work. His academic journey includes a Ph.D. in Energy and Environment from Southeast University followed by a Postdoctoral Fellowship at NUAA’s College of Energy and Power Engineering. Dr. Pu has been serving as an Associate Professor at NUAA since 2011 and was a Visiting Scholar at the University of Nevada, Las Vegas. Dr. Pu’s work is instrumental in advancing the understanding and application of thermal management systems, with implications for energy efficiency and sustainable technologies.

Profiles: Scopus | Orcid

 

Featured Publications

“Thermal characteristics study of a heat sink with embedded phase change material (PCM) in the triply periodic minimal surfaces (TPMS)”.

“Thermal performance analysis on steady-state and dynamic response characteristic in solar tower power plant based on supercritical carbon dioxide Brayton cycle”.

“Performance study of a supercritical carbon dioxide energy storage system with non-uniform graded compression heat recovery”.

“Experimental and numerical investigations on the intermittent heat transfer performance of phase change material (PCM)-based heat sink with triply periodic minimal surfaces (TPMS)”.

Xiang Li | Environmental Science | Best Researcher Award | 13461

Prof Dr. Xiang Li | Environmental Science | Best Researcher Award 

Prof Dr. Xiang Li, Fudan University, China

Prof. Dr. Xiang Li is a distinguished Professor in the Department of Environmental Science and Engineering at Fudan University, Shanghai. With deep expertise in exhaled volatile organic compounds (VOCs), his pioneering research integrates breathomics, multi-omics analysis, and AI-based diagnostics to enable non-invasive early detection of diseases such as colorectal, gastric, and brain cancers. Prof. Li has led over 20 research projects, including several major grants from the National Natural Science Foundation of China, and has collaborated internationally with institutions like TROPOS and the University of Waterloo. His work bridges environmental health, analytical chemistry, and public health innovation, making significant strides in the field of precision diagnostics and air pollution impact assessment.

Author Profile

Google Scholar

🎓 Early Academic Pursuits

Prof. Dr. Xiang Li began his academic journey with a keen interest in environmental chemistry and health science. His early training laid a robust foundation in analytical chemistry and environmental sciences, which later expanded into interdisciplinary research addressing public health challenges. A pivotal chapter in his formative years was his post-doctoral fellowship at the University of Waterloo, Canada (2008–2009), where he worked under Prof. Janusz Pawliszyn, a world-renowned expert in sampling and analytical techniques. This experience not only honed his technical expertise but also shaped his future research direction toward human exposure science and non-invasive diagnostics.

👨‍🔬 Professional Endeavors

Prof. Xiang Li has been a central figure at Fudan University’s Department of Environmental Science and Engineering since 2006, ascending from Assistant Professor to Full Professor. His academic career is marked by consistent progression and international collaboration, including a visiting scholar stint at TROPOS, Germany (2014–2015), where he worked with Prof. Hartmut Herrmann on atmospheric chemistry.

Since 2016, he has held the position of Full Professor, leading a vibrant research group and mentoring graduate students, postdoctoral researchers, and early-career scholars. Over the years, he has secured more than 20 research projects, amassing over 15 million RMB in research funding, with sustained support from the National Natural Science Foundation of China (NSFC).

🔬 Contributions and Research Focus

At the core of Prof. Li’s research lies the application of exhaled volatile organic compounds (VOCs) in disease diagnostics, particularly in cancer screening. He has developed a high-fidelity breath sampling system and a high-resolution VOC detection platform, allowing for precise identification of metabolic changes associated with various diseases.

His integrated approach combines:

  • 🧪 Direct VOC observation

  • 🧬 Multi-omics analysis

  • 🤖 AI-driven modeling for multi-disease classification

His goal is to develop non-invasive, scalable, and clinically reliable diagnostic tools. These tools have proven especially valuable in early detection of diseases like colorectal, gastric, and brain cancers.

Additionally, Prof. Li’s group actively studies:

  • 🌍 Extreme climate events

  • 🔄 Environmental carbon cycling

  • ⚗️ Environmental analytical chemistry

  • ⚠️ Emerging pollutants

  • 🌫️ Air organic pollution exposure and health impacts

This interdisciplinary scope reinforces his ability to bridge environmental science and public health, a rare and valuable combination.

🏅 Accolades and Recognition

Prof. Li’s prolific research output and innovation have earned him recognition at both national and international levels. His successful acquisition of key NSFC grants, including international cooperative projects (e.g., Sino-German studies on ozone and PM interactions), highlights his leadership in global scientific networks.

Select prestigious projects include:

  • 🌬️ NSFC Key Project on Atmospheric Ozone & PM Regulation (2021–2023)

  • 💨 NSFC Project on Human Exhaled VOC Response to Air Pollution (2023–2026)

  • 🔥 NSFC Project on Oxidative Potential of Atmospheric Particles (2019–2022)

These projects underscore his ability to lead high-impact research teams that address urgent environmental and health-related challenges.

🌍 Impact and Influence

Prof. Li’s work has profound societal implications, especially in non-invasive disease diagnostics and air pollution exposure analysis. His contributions are helping to:

  • 💡 Advance early detection techniques for life-threatening diseases

  • 🧑‍⚕️ Reduce healthcare burden through preventive diagnostics

  • 🌱 Promote sustainable development by linking air quality and human health

  • 🧭 Inform policy decisions regarding environmental health risks

Moreover, by incorporating AI algorithms, he is at the forefront of next-generation precision medicine, moving beyond traditional boundaries of environmental science.

🧬 Legacy and Future Contributions

Prof. Dr. Xiang Li’s scientific legacy is already evident in the real-world applicability of his research. He is building a framework for large-scale clinical adoption of breath biopsy—a field that has the potential to revolutionize public health screening.

Looking ahead, his team is expected to:

  • Expand the breathomics database for multiple diseases

  • Enhance AI-based diagnostic models using global clinical datasets

  • Collaborate across countries for standardizing breath tests

  • Advocate for public health policies rooted in scientific evidence

✍️ Publication Top Notes


📘Pinning a complex dynamical network to its equilibrium

Author: X Li, X Wang, G Chen
Journal: IEEE Transactions on Circuits and Systems
Year: 2004

📘A Facile One-Pot Synthesis of a Two-Dimensional MoS2/Bi2S3 Composite Theranostic Nanosystem for Multi-Modality Tumor Imaging and Therapy.
Author: S Wang, X Li, Y Chen, X Cai, H Yao, W Gao, Y Zheng, X An, J Shi, …
Journal: Advanced Materials
Year: 2015

📘Spatial epidemiology of networked metapopulation: An overview

Author: L Wang, X Li
Journal: Chinese Science Bulletin
Year: 2014

Manqing li | Biomass | Best Researcher Award | 13399

Ms. Manqing li | Biomass | Best Researcher Award

Ms. Manqing li, Shanghai University, China

Ms. Manqing Li is a Master’s degree candidate at the School of Materials Science and Engineering, Shanghai University. She has demonstrated strong academic performance, earning two first-class scholarships and leading several research competition projects, including the prestigious Challenge Cup and the China Postgraduate ‘Double Carbon’ Innovation Competitions. Her research focuses on biomass energy, particularly microwave pyrolysis of rapeseed straw. She has published in high-impact journals such as Energy (IF: 9) and holds six Chinese patents. With her innovative work and academic excellence, she is a strong contender for the Best Researcher Award.

Profile

Scopus

🎓 Early Academic Pursuits

Ms. Manqing Li embarked on her academic journey with a deep-rooted passion for materials science and sustainable energy. Currently a Master’s degree candidate at the School of Materials Science and Engineering, Shanghai University, she has shown exceptional academic promise since the start of her postgraduate studies. As a dedicated student of the Class of 2022, Manqing quickly distinguished herself through academic diligence, curiosity-driven inquiry, and a commitment to addressing environmental challenges through engineering innovation. Her formative years at Shanghai University laid the foundation for her research-oriented mindset and set the stage for her impressive scientific output.

💼 Professional Endeavors

While still a graduate student, Ms. Li has taken on roles and responsibilities that reflect a seasoned researcher. Her work revolves around biomass energy, particularly exploring the microwave pyrolysis of rapeseed straw to produce solid fuels with low sulfur content and high heating value (HHV). Beyond the lab, she has actively participated in national-level competitions, serving as project leader in events such as:

  • 🏆 Challenge Cup Entrepreneurship Programme for University Students (2023 and 2024 editions)

  • 🌱 The Third China Postgraduate ‘Double Carbon’ Innovation and Creativity Competition

Her leadership roles in these platforms underline her capability to blend scientific knowledge with entrepreneurial spirit and project management, vital skills for bridging research and real-world application.

🔬 Contributions and Research Focus

Ms. Li’s research addresses pressing environmental and energy concerns, with a sharp focus on biomass resource utilization for sustainable fuel generation. Her work on microwave pyrolysis technology is not only innovative but also vital in advancing low-emission energy alternatives. Through this project, she aims to develop methods that optimize fuel yield while minimizing environmental impacts.

She has already contributed significantly to the scientific community by publishing in top-tier journals:

Additionally, Ms. Li is an inventor/co-inventor on six patents (e.g., CN202311385626.4, CN202420919247.2), reflecting her ability to generate original, application-driven solutions in her field.

🏅 Accolades and Recognition

In recognition of her excellence, Ms. Manqing Li has been awarded two first-class scholarships during her postgraduate studies. These prestigious academic honors are a testament to her outstanding performance and relentless pursuit of knowledge. Her innovative projects and scholarly outputs have not only earned her academic praise but have also positioned her as a rising talent in the materials and energy science community in China.

🌐 Impact and Influence

Despite being in the early stages of her career, Ms. Li’s work has begun to influence the renewable energy sector, particularly in areas related to biomass processing and carbon reduction. Her research supports China’s national “Double Carbon” goals—aiming for carbon peaking and neutrality—and addresses broader international climate concerns.

Moreover, by participating in interdisciplinary innovation competitions, she serves as a role model for young women in STEM, especially in traditionally male-dominated fields like materials engineering. Her ability to blend technical expertise with social responsibility highlights the holistic impact of her work.

🌟 Legacy and Future Contributions

Ms. Manqing Li’s journey is only beginning, yet her trajectory already promises a lasting legacy in sustainable materials development. She is determined to further her contributions to clean energy research, with future goals including:

  • 🌱 Developing more efficient biomass-to-fuel technologies

  • 🤝 Collaborating with global research institutions and industry leaders

  • 📚 Publishing more high-impact studies and mentoring upcoming researchers

  • 🧪 Expanding patentable innovations in green technology

As she looks ahead, Ms. Li aims to pursue doctoral studies and eventually contribute as a researcher or educator at a leading research institute. Her vision is not just limited to technological advancement, but also encompasses education, policy influence, and sustainable development.

Publication Top Notes 

Author: M., Li, Manqing, , C., Lu, Chunyang, J., Ren, Jie, Y., Yu, Yaowei

Journal: Energy

Year: 2025

Effects of mineral composition on properties of cold-bonded briquette prepared from returned sinter fines

Author: Ying Li, Man-qing Li, De-jin Qiu, Yuan-dong Xiong, Jie Ren, Mamdouh Omran & Yao-wei Yu

Journal: Iron and Steel research

Year: 2025

 

Xiaoshu sun | Environmental economics | Best Researcher Award | 13371

Ms. Xiaoshu sun | Environmental economics | Best Researcher Award 

Ms. Xiaoshu sun, Northeastern University, China

Ms. Xiaoshu Sun is currently pursuing her Ph.D. in Applied Economics at Northeastern University, Shenyang, China. Her research focuses on the digital economy, green economy, and income distribution. She has published multiple papers in reputed journals including SSCI, SCI, and Scopus-indexed publications. Her recent work explores the impact of digital technology on rural-urban income disparity and the coupling between digital transformation and green manufacturing efficiency in China. Using advanced models like the non-expected SBM-DEM, she has contributed valuable insights into regional development dynamics. Ms. Sun also serves on the editorial board of Asia Pacific Economic and Management Review.

Profile

Orcid

🎓 Early Academic Pursuits

Ms. Xiaoshu Sun began her academic journey with a strong foundation in economics, demonstrating a keen interest in understanding the evolving dynamics of modern economies. Her passion for exploring the intersections between technology, sustainability, and economic equity led her to pursue a Ph.D. in Applied Economics at Northeastern University, Shenyang, China. From early in her academic career, she was drawn to complex issues such as income distribution, the digital economy, and environmental sustainability. This solid academic base has equipped her with both the theoretical knowledge and practical skills necessary to tackle pressing global economic challenges.

💼 Professional Endeavors

Though currently a Ph.D. student, Ms. Sun’s professional contributions are already noteworthy. She has authored and co-authored several research papers published in internationally recognized journals such as Economic Research-Ekonomska Istrazivanja, Journal of Environmental Planning and Management, Frontiers in Environmental Science, and PLOS ONE. These publications have addressed vital questions surrounding economic modernization, particularly in the context of China’s rapid digital transformation and green development initiatives.

In addition to her academic publishing, Ms. Sun holds an editorial appointment with the Asia Pacific Economic and Management Review, where she contributes to the peer review and knowledge dissemination processes. Her work reflects a deep commitment to advancing scholarly dialogue in her fields of interest.

🧠 Contributions and Research Focus

Ms. Xiaoshu Sun’s research is primarily focused on three interconnected areas:

  • Digital Economy

  • Green Economy

  • Income Distribution

One of her most significant contributions involves using the non-expected SBM-DEM model to measure green manufacturing efficiency across 274 prefecture-level cities in China. This empirical study has revealed that the coupling coordination between digitalization and green efficiency remains relatively low, with stark regional disparities. Notably, her findings emphasize that the digital economy exerts a positive “radiation effect”, meaning it not only boosts green manufacturing efficiency within a region but also benefits neighboring areas through technological spillovers. She further discovered that industrial agglomeration serves as a partial mediating factor in this process, highlighting the importance of industrial clustering in enhancing regional development.

Her published works reflect a strong methodological foundation, including the application of Spatial Durbin Modelling to analyze spatial effects and interdependencies. These insights are vital for policymakers aiming to bridge the digital divide and promote environmentally sustainable industrial growth.

🏆 Accolades and Recognition

While Ms. Sun is still in the early stages of her professional journey, her scholarly output has already earned international attention through publications in SSCI, SCI, and Scopus-indexed journals. This achievement is significant, especially for a Ph.D. candidate, and points to the rigorous quality and relevance of her work. Furthermore, her appointment to the editorial board of an academic journal at this stage of her career is a testament to her growing recognition within the academic community.

🌍 Impact and Influence

Ms. Sun’s research has direct implications for economic policy, urban planning, and sustainable development in China and other emerging economies. By highlighting the nuanced interactions between digital innovation and green growth, she offers a valuable roadmap for achieving sustainable economic modernization. Her findings advocate for targeted policy interventions to enhance digital infrastructure, foster industrial clusters, and balance regional development.

Moreover, her work contributes to global academic conversations around the UN Sustainable Development Goals (SDGs), particularly in areas such as industry innovation (SDG 9), reduced inequalities (SDG 10), and sustainable cities and communities (SDG 11).

🌟 Legacy and Future Contributions

Looking ahead, Ms. Xiaoshu Sun is poised to become a leading scholar in applied economics with a particular focus on the digital-green transition. As she progresses in her academic career, she is likely to engage in policy consultancy, interdisciplinary collaborations, and potentially take on advisory roles in governmental or international organizations. Her ability to bridge the gap between theoretical research and real-world application will be instrumental in shaping the next generation of sustainable economic policies.

With her proven analytical skills, dedication to sustainability, and commitment to academic excellence, Ms. Sun is set to leave a lasting impact not only in China but also on the broader global stage.

Publication Top Notes

ContributorsXiaoshu Sun; Wanyu Zhang; Xianming Kuang
Journal: Frontiers in Environmental Science
Year: 2024
Journal: Economic Research-Ekonomska Istraživanja
Year: 2023
ContributorsXiaoshu Sun; Jie Tao; Xianming Kuang
Journal: Environmental Planning and Management
Year: 2023