Dayeong An | Engineering | Women Researcher Award | 13446

Dr. Dayeong An | Engineering | Women Researcher Award

Dr. Dayeong An, Medical College of Wisconsin, United States

Dr. Dana (Dayeong) An is a Postdoctoral Fellow in the Department of Radiology at Northwestern University with a strong interdisciplinary background in biomedical engineering, computational sciences, and statistics. Her research focuses on machine learning and probabilistic modeling for multimodal biomedical data integration, particularly in neurovascular and cardiac imaging. She has developed advanced AI frameworks for stroke outcome prediction, perfusion analysis, and cardiac strain estimation. With multiple peer-reviewed publications and awards, Dr. An brings expertise in deep learning, medical image processing, and translational AI for precision medicine.

Profile

ORCID

🎓 Early Academic Pursuits

Dr. Dana (Dayeong) An’s academic journey is rooted in a solid foundation of mathematics, statistics, and computational sciences. She began her higher education at Minnesota State University, earning a B.S. in Mathematics with a minor in Economics in 2012. Her strong mathematical background laid the groundwork for advanced study, leading her to pursue dual M.S. degrees in Mathematics and Statistics (2014) and Computational Sciences (2018). These degrees reflect a growing interest in data analysis, modeling, and algorithmic thinking—skills that would become central to her future research. Her academic path culminated in a Ph.D. in Biomedical Engineering from the Medical College of Wisconsin in 2024. During her doctoral training, Dr. An fused her analytical skills with biomedical applications, working at the intersection of medical imaging and machine learning. Her education reflects a rare combination of quantitative rigor and domain-specific insight, enabling her to tackle complex problems in healthcare and precision medicine.

🧠 Professional Endeavors

Dr. An currently serves as a Postdoctoral Fellow in the Department of Radiology at Northwestern University, where she applies advanced machine learning techniques to neurovascular and cardiac imaging data. Her professional roles have spanned research, teaching, and clinical applications. At the Medical College of Wisconsin, she worked as a Research Assistant, refining deep learning algorithms for myocardial strain analysis, MRI-based diagnostics, and experimental studies on cardiotoxicity in animal models. Earlier in her career, she served as an Adjunct Professor and Teaching Assistant at multiple institutions, including Marquette University, Globe University, and South Central College, where she taught a variety of math and statistics courses. This teaching experience showcases her commitment to education and her ability to communicate complex topics to diverse audiences.

🧪 Contributions and Research Focus

Dr. An’s research is centered on machine learning and probabilistic modeling for multimodal biomedical data integration. Her contributions span multiple domains:

  • Neurovascular Imaging: She has developed frameworks using Bayesian priors and transformer models to estimate physiological parameters from perfusion MRI data. She also works with large-scale databases such as NVQI-QOD to predict stroke outcomes and recurrence risks in intracranial atherosclerotic disease (ICAD).

  • Cardiac MRI and Strain Analysis: Dr. An fine-tuned U-Net and GAN architectures to automate strain generation and displacement field analysis from cine MRI images. These tools enhance early detection of cardiotoxicity and improve diagnostic accuracy.

  • Image Processing and Simulation: She built deep learning-based deformable registration tools to reduce motion artifacts in angiography and improve vascular fidelity. Additionally, she contributed to differentiable projection modeling for fluoroscopic pose estimation.

  • Translational AI: Her work aims to bridge the gap between algorithm development and clinical implementation, with models designed for real-time, patient-specific analysis.

Her research is not only technical but also translational, addressing real-world challenges in healthcare delivery and diagnostics.

🏆 Accolades and Recognition

Dr. An has received numerous honors for her research excellence and academic contributions:

  • Poster Competition Winner at Marquette University and the Medical College of Wisconsin.

  • Scholarship and Travel Grants from prestigious societies such as the Global Cardio Oncology Summit, ISMRM, and Marquette University.

  • Kayoko Ishizuka Award and Graduate Student Association Awards at MCW.

  • Recognition for conference presentations at RSNA, ISMRM, SCMR, and ASNR.

Her work has been published in well-regarded journals including Radiology and Oncology, Journal of Imaging Informatics in Medicine, and Tomography, reflecting her influence across multiple disciplines.

🌍 Impact and Influence

Dr. An’s interdisciplinary expertise positions her as a valuable contributor to both the academic and clinical communities. Her collaborations with leading institutions such as Cleveland Clinic and Purdue University demonstrate the broader impact of her research. Whether improving stroke outcome prediction or refining cardiac diagnostics, her contributions are making real-world differences in how clinicians approach patient care. She is also actively involved in professional societies like RSNA, ISMRM, IEEE, and the American Statistical Association, fostering knowledge exchange and staying at the forefront of innovation.

🌱 Legacy and Future Contributions

Looking ahead, Dr. An aspires to expand her impact by continuing to develop explainable, reliable, and patient-specific AI tools for medical imaging. Her future work will likely delve deeper into probabilistic deep learning, longitudinal outcome modeling, and integrated diagnostics using multi-modal data sources such as imaging, genomics, and electronic health records. She is poised to be a leader in translational AI, driving innovations that not only push the boundaries of computational medicine but also enhance patient outcomes and healthcare efficiency.

🔗 Final Thoughts

Dr. Dana (Dayeong) An exemplifies a new generation of biomedical engineers—fluent in mathematics, passionate about clinical impact, and committed to advancing the future of precision medicine through data-driven innovation. Her legacy is being built at the nexus of technology, healthcare, and humanity.

📄 Publication Top Notes

Radiation-Induced Cardiotoxicity in Hypertensive Salt-Sensitive Rats: A Feasibility Study

Author: Dayeong An; Alison Kriegel; Suresh Kumar; Heather Himburg; Brian Fish; Slade Klawikowski; Daniel Rowe; Marek Lenarczyk; John Baker; El-Sayed Ibrahim

Journal: Life

Year: 2025

Elucidating Early Radiation-Induced Cardiotoxicity Markers in Preclinical Genetic Models Through Advanced Machine Learning and Cardiac MRI

Author: Dayeong An; El-Sayed Ibrahim

Journal: Journal of Imaging

Year: 2024

Jun Liu | Engineering | Best Researcher Award | 13444

Assoc. Prof. Dr. Jun Liu | Engineering | Best Researcher Award

Assoc. Prof. Dr. Jun Liu, North China University of Water Resources and Electric Power, China

Assoc. Prof. Dr. Jun Liu is an Assistant Professor and Master’s Supervisor in the Department of Thermal Engineering at North China University of Water Resources and Electric Power. He holds a Ph.D. in Engineering Thermophysics from Zhejiang University and specializes in CO₂ capture and utilization, solid waste treatment, multiphase flow and combustion simulation, and pollutant removal technologies. Dr. Liu has led multiple provincial-level research projects and published extensively in SCI and EI-indexed journals. His teaching focuses on boiler principles, operations, and clean combustion technologies.

Profile

Scopus

🎓 Early Academic Pursuits

Assoc. Prof. Dr. Jun Liu began his academic journey with a solid foundation in engineering and technology. In 2005, he enrolled at Shanxi University, where he pursued a Bachelor’s degree in Automation under the Department of Information Engineering. This initial exposure to systems control and engineering principles cultivated his interest in energy systems and laid the groundwork for his future endeavors in thermal engineering and environmental research. In 2009, he took a decisive step toward specializing in energy technologies by pursuing a Master’s degree in Fluid Machinery and Engineering at the School of Electric Power, North China University of Water Resources and Electric Power. Here, he honed his understanding of energy conversion systems, power plant operations, and machinery critical to thermal power generation. His passion for research and academic excellence led him to earn a Ph.D. in Engineering Thermophysics at the prestigious Zhejiang University from 2012 to 2016. This phase of his education sharpened his expertise in combustion processes, thermodynamic systems, and pollutant control, which later became key pillars of his professional and research identity.

💼 Professional Endeavors

Following the completion of his doctorate, Dr. Liu began his professional career at the Xi’an Thermal Power Research Institute Co., Ltd., Suzhou Branch in 2016. In this applied research environment, he gained hands-on experience in industrial-scale power systems and thermal processes, translating academic knowledge into practical solutions. In April 2019, Dr. Liu returned to academia, joining the College of Energy and Power Engineering at the North China University of Water Resources and Electric Power as an Assistant Professor and Master’s Supervisor. His return marked a blend of academic vigor and industrial insight, enriching the university’s teaching and research capabilities.

🔬 Contributions and Research Focus

Dr. Liu’s research spans several crucial areas within energy and environmental engineering:

  1. CO₂ Capture and Resource Utilization – He leads studies on innovative adsorbent materials and absorption technologies aimed at mitigating greenhouse gas emissions.

  2. Solid Waste Treatment – His work on incinerator systems and waste-to-energy solutions contributes to sustainable waste management practices.

  3. Multiphase Flow and Combustion Simulation – By modeling combustion processes, he aims to optimize energy efficiency and reduce emissions.

  4. Pollutant Removal – His research explores integrated technologies for removing NOx, SOx, and other harmful emissions from combustion systems.

He has presided over several key provincial research projects, including studies on CO₂ adsorption kinetics, microencapsulated absorbents, and waste heat boiler performance. His work reflects a deep commitment

🏅 Accolades and Recognition

to both scientific innovation and environmental sustainability.

Dr. Liu’s contributions have been recognized with several prestigious awards:

  • 🥇 First Prize, Boiler Science and Technology Award (2023), for his contributions to power generation technology for large mechanical grates.

  • 🥈 Second Prize, Henan Provincial Science and Technology Progress Award (2022), for his role in developing low-temperature waste heat recovery systems.

  • 🏆 First Prize, Excellent Scientific and Technological Paper Award by the Henan Province Office of Education (2021).

These accolades underscore his impactful research and its relevance to both academia and industry.

🌍 Impact and Influence

Dr. Liu has authored multiple peer-reviewed papers in SCI and EI indexed journals, reflecting the scientific merit and practical application of his research. His publication in Waste Management on flue gas recirculation and NOx emission control is especially noteworthy in the context of sustainable waste-to-energy practices. Moreover, his work influences not only fellow researchers but also policymakers and industry professionals seeking advanced environmental solutions. As a committed educator, he imparts knowledge through courses like Boiler Principle, Boiler Operation, and Clean Combustion and Pollutant Control. His teaching integrates the latest research findings, ensuring that students are prepared for real-world energy challenges.

🌱 Legacy and Future Contributions

Looking ahead, Dr. Liu is poised to continue making substantial contributions to the fields of clean energy and environmental protection. His interdisciplinary approach, combining engineering thermophysics, environmental science, and applied technology, equips him to tackle emerging challenges such as carbon neutrality, smart power systems, and circular economy strategies for waste management. He is also likely to mentor the next generation of researchers, fostering innovation through student supervision, collaborative projects, and academic outreach. As climate concerns and energy demands rise globally, Dr. Liu’s expertise will remain critical in shaping sustainable technological pathways for the future.

📄 Publication Top Notes

Research Progress on the Occurrence Characteristics of AAEM Elements in Zhundong Coal

Author: W., Wang, Wei, X., Guo, Xinwei, X., Wu, Xiaojiang, … C., Fan, Cunjiang, L., Zhuo, Lanting

Journal: Dongli Gongcheng Xuebao /Journal of Chinese Society of Power Engineering

Year: 2025

The effect of air distribution on the characteristics of waste combustion and NO generation in a grate incinerator

Author:  J., Liu, Jun, Z., Xie, Zheng, B., Guo, Bingyu, … L., Bai, Li, J., Long, Jisheng

Journal: Journal of the Energy Institute .,

Year: 2024

King-Ning TU | Advanced Materials Engineering | Excellence in Research

Prof Dr. King-Ning TU | Advanced Materials Engineering | Excellence in Research

Chair Professor at City University of Hong Kong, Hong Kong.

Prof. Dr. King-Ning Tu is a distinguished academic and researcher in materials science and engineering. He completed his education with a B.Sc. in Mechanical Engineering from National Taiwan University, an M.Sc. in Materials Science from Brown University, and a Ph.D. in Applied Physics from Harvard University. Throughout his illustrious career, Dr. Tu has held notable positions such as Professor and Chair of the Department of Materials Science and Engineering at UCLA, TSMC Chair Professor at National Chiao Tung University, and Chair Professor at City University of Hong Kong. His research focuses on electronic thin films, solder joint technology, and nanoscale materials, with significant contributions to these fields. Dr. Tu is recognized as a Fellow of prestigious societies like the American Physical Society and the Materials Research Society. He has authored several influential textbooks and received numerous awards for his outstanding contributions to materials science and engineering.

Professional Profiles:

Education

Prof. Dr. King-Ning Tu obtained his foundational education in Mechanical Engineering with a B.Sc. degree from National Taiwan University in Taiwan, which he completed in 1960. He then pursued further studies in the United States, earning an M.Sc. in Materials Science from Brown University in Providence, RI, in 1964. Continuing his academic journey, he completed his Ph.D. in Applied Physics at Harvard University in Cambridge, MA, in 1968. These educational milestones equipped him with a comprehensive understanding of mechanical engineering, materials science, and applied physics, forming the bedrock of his illustrious career in research and academia.

Professional Experience

Prof. Dr. King-Ning Tu has had a distinguished career spanning several prestigious institutions and roles in the field of materials science and engineering. He began as a Research Staff Member at IBM T. J. Watson Research Center, where he later became the 3rd Level Manager of the Materials Science Department. Over the years, he held significant academic positions, including Adjunct Professor at Cornell University and Professor and Chair at UCLA’s Department of Materials Science and Engineering. His contributions extended internationally, serving as the TSMC Chair Professor at National Chiao Tung University in Taiwan and as a Chair Professor at City University of Hong Kong. Tu’s research interests have focused on metal-silicon reactions, nanowires, and electronic packaging technology. He has authored several influential textbooks and received numerous honors, including fellowship in prestigious societies and awards for his research contributions to materials science and engineering.

Research Interest

Prof. Dr. King-Ning Tu is a distinguished figure in the field of materials science and engineering, celebrated for his extensive contributions spanning several decades. He began his illustrious career as a research staff member at IBM T. J. Watson Research Center, where he later rose to the position of 3rd Level Manager of the Materials Science Department. His tenure at IBM was marked by pioneering research in areas such as metal-silicon reactions, solder joint technology, and electromigration in nanowires. Over the years, Prof. Tu held significant academic appointments, including as Professor and Chair of the Department of Materials Science and Engineering at UCLA, and as a Distinguished Professor of Electrical Engineering. He also served as the TSMC Chair Professor at National Chiao Tung University and as a Chair Professor at City University of Hong Kong. Throughout his career, he has authored numerous influential textbooks and research papers that have advanced our understanding of electronic materials and their reliability in various applications. Prof. Tu’s work continues to inspire and guide researchers in the field worldwide.

Award and Honors

Prof. Dr. King-Ning Tu has garnered a wealth of accolades throughout his illustrious career in materials science and engineering. His contributions have been widely recognized by prestigious institutions and organizations worldwide. He was elected as a Fellow of the American Physical Society in 1981 and The Metallurgical Society in 1988. Serving as President of the Materials Research Society in 1981 and later being named a Fellow in 2010 further exemplifies his leadership in the field. Prof. Tu was honored with the Humboldt Research Award for Senior US Scientists in 1996 and appointed as a Royal Society/Kan Tong Po Visiting Professor at City University of Hong Kong in 2002. His election as an Academician of Academia Sinica, Taiwan, in 2002, and receipt of the TMS Electronic, Magnetic, and Photonic Materials Division Distinguished Scientist Award in 2007 highlight his profound impact on the discipline. More recently, he received the IEEE Components, Packaging, and Manufacturing Technology Award in 2017, underscoring his ongoing influence and contributions to the field.

Research Skills

Prof. Dr. King-Ning Tu is renowned for his extensive research contributions in materials science and engineering, spanning over several decades. His career began as a research staff member at IBM T. J. Watson Research Center, where he later served as the 3rd Level Manager of the Materials Science Department. Throughout his academic journey, Prof. Tu held significant positions including Adjunct Professor at Cornell University, Professor and Chair at UCLA’s Department of Materials Science and Engineering, and Distinguished Professor at UCLA’s Department of Electrical Engineering. His international engagements include roles as the TSMC Chair Professor at National Chiao Tung University in Taiwan, E-Sun scholar, and Chair Professor at City University of Hong Kong. Prof. Tu’s research focuses on diverse areas such as metal-silicon reactions, solder joint technology, and nanoscale materials’ kinetics and reliability. His leadership, mentorship, and prolific publication record have profoundly influenced the field, making him a pivotal figure in advancing materials science globally.

Publications

  1. Influence of Sn grain orientation on mean-time-to-failure equation for microbumps in 3D IC technology
    • Authors: Yao, Y.; Gusak, A.M.; Chen, C.; Liu, Y.; Tu, K.N.
    • Journal: Scripta Materialia
    • Year: 2024
    • Citations: 0
  2. Mechanical characterizations of η′-Cu6(Sn, In)5 intermetallic compound solder joint: Getting prepared for future nanobumps
    • Authors: Mao, X.; An, Y.; Chen, Y.; Tu, K.-N.; Liu, Y.
    • Journal: Journal of Materials Research and Technology
    • Year: 2024
    • Citations: 0
  3. Microstructure and Intermetallic Growth Characteristics of Sn-Bi-In-xGa Quaternary Low Melting Point Solders
    • Authors: Qiao, J.; Mao, X.; Tu, K.-N.; Liu, Y.
    • Conference: 2024 International Conference on Electronics Packaging, ICEP 2024
    • Year: 2024
    • Citations: 0
  4. Coupling effect between electromigration and joule heating on the failure of ball grid array in 3D integrated circuit technology
    • Authors: Yao, Y.; An, Y.; Tu, K.N.; Liu, Y.
    • Journal: Journal of Materials Research and Technology
    • Year: 2024
    • Citations: 0
  5. Elements of Electromigration: Electromigration in 3D IC Technology
    • Authors: Tu, K.-N.; Liu, Y.
    • Book: Elements of Electromigration: Electromigration in 3D IC Technology
    • Year: 2024
    • Citations: 0
  6. Measurement of Thermal Stress by X-ray Nano-Diffraction in (111)-Oriented Nanotwinned Cu Bumps for Cu/SiO2 Hybrid Joints
    • Authors: Hsu, W.-Y.; Yang, S.-C.; Lin, Y.-Y.; Chiang, C.-Y.; Chen, C.
    • Journal: Nanomaterials
    • Year: 2023
    • Citations: 1
  7. Electromigration in three-dimensional integrated circuits
    • Authors: Shen, Z.; Jing, S.; Heng, Y.; Tu, K.N.; Liu, Y.
    • Journal: Applied Physics Reviews
    • Year: 2023
    • Citations: 12
  8. To suppress thermomigration of Cu–Sn intermetallic compounds in flip-chip solder joints
    • Authors: Huang, Y.-R.; Tran, D.-P.; Hsu, P.-N.; Tu, K.N.; Chen, C.
    • Journal: Journal of Materials Research and Technology
    • Year: 2023
    • Citations: 6
  9. Comparison between bulk and particle solder alloy on the performance of low-melting solder joints
    • Authors: Yang, M.; Zhao, X.; Huo, Y.; Tu, K.-N.; Liu, Y.
    • Journal: Journal of Materials Research and Technology
    • Year: 2023
    • Citations: 2
  10. Synergistic Effect of Current Stressing and Temperature Cycling on Reliability of Low Melting Point SnBi Solder
    • Authors: Shen, Z.; An, Y.; Xiong, Z.; Tu, K.-N.; Liu, Y.
    • Conference: 2023 24th International Conference on Electronic Packaging Technology, ICEPT 2023
    • Year: 2023
    • Citations: 0