Laleh Kalankesh | Environmental Science | Women Researcher Award

Assist Prof Dr. Laleh Kalankesh | Environmental Science | Women Researcher Award 

Medical science university | Iran

Dr. Laleh R. Kalankesh is an accomplished environmental health engineer and academic whose research integrates environmental engineering, public health, and environmental epidemiology, with a strong emphasis on water quality, pollution control, and human health risk assessment. She is currently an Assistant Professor of Environmental Health Sciences at Gonabad University of Medical Sciences, Iran, where she is actively involved in teaching, mentoring postgraduate students, and leading multidisciplinary research projects addressing critical environmental and health challenges in Iran and comparable arid and semi-arid regions. Dr. Kalankesh earned her PhD in Environmental Health Engineering from Mazandaran University of Medical Sciences, where her doctoral research focused on monitoring disinfection by-products (DBPs), including trihalomethanes (THMs) and haloacetic acids (HAAs), in surface water, groundwater, and drinking water distribution networks. Her work also advanced membrane technology by developing graphene oxide–modified polyamide nanofiltration membranes to enhance the removal of DBPs and total organic carbon (TOC). This research built on her earlier MSc and BSc training in environmental health engineering, with a strong foundation in nanoparticle applications for wastewater treatment and heavy metal removal. Her research portfolio spans water and wastewater treatment, membrane processes, nanomaterials, air pollution, and environmental epidemiology. She has made notable contributions to understanding DBP formation and health risks, desalination using microbial desalination cells, photocatalytic degradation of organic pollutants, and the application of nanoparticles and composites as bactericides and adsorbents. In parallel, her epidemiological studies examine the health impacts of air pollution, meteorological factors, and socio-environmental inequalities, including contributions to large-scale Global Burden of Disease (GBD) studies published in leading journals such as The Lancet Planetary Health and The Lancet Global Health. Dr. Kalankesh has authored 45 peer-reviewed publications, holds an h-index of 21, and is recognized among the world’s top 2% scientists (2025). She has served as principal investigator on numerous nationally funded research projects and is an active peer reviewer for international journals. Her innovative capacity is further reflected in a patented portable device for sterilizing fruits and vegetables. Through her interdisciplinary research and academic leadership, Dr. Kalankesh continues to contribute significantly to advancing environmental health science and evidence-based policy for sustainable development and public health protection.

Citation Metrics (Google Scholar)

9000
8000
7000
6000
5000
4000
3000
2000
1000
500
400
300
200
100
50
0

Citations
8343

Documents
57

h-index
22

Citations

Documents

h-index

View Google Scholar Profile     View Scopus Profile

Featured Publications

Dongdong Wang | Environmental Science | Research Excellence Award

Prof Dr. Dongdong Wang | Environmental Science | Research Excellence Award

University of Science and Technology of China | China

Prof. Dr. Dongdong Wang is a distinguished materials scientist and interdisciplinary researcher whose work bridges chemistry, nanotechnology, biology, and medicine, with a strong focus on nanozyme engineering and metal–organic framework (MOF)–derived functional materials for biomedical applications. He received his Bachelor of Science degree from Lanzhou University and earned his Ph.D. in 2018 from the University of Science and Technology of China (USTC). Following his doctoral training, he conducted postdoctoral research at Nanyang Technological University from 2018 to 2022, where he further expanded his expertise in advanced nanomaterials and catalytic systems. In June 2022, Prof. Wang joined USTC as a Professor and Principal Investigator, establishing an independent and rapidly growing research program. Prof. Wang has authored more than 80 high-impact research articles published in internationally leading journals such as Accounts of Chemical Research, Nature Communications, Angewandte Chemie, Advanced Materials, Chem, ACS Nano, and Advanced Science. His scholarly contributions demonstrate both depth and breadth, ranging from fundamental mechanistic studies to application-oriented innovations. His research is supported by competitive funding, including grants from the National Natural Science Foundation of China and the Anhui Provincial Natural Science Foundation, reflecting strong national recognition of his scientific leadership. In 2025, he was selected as a JMCB Emerging Investigators, further underscoring his rising international profile. The core of Prof. Wang’s research lies in the rational design and synthesis of porous nanozymes, single-atom nanozymes, and MOF-based hybrid materials. He systematically investigates their enzymatic catalytic mechanisms and explores their applications in tumor imaging, diagnosis, therapy, antibacterial treatment, and immunomodulation. A defining feature of his work is the integration of reactive oxygen species (ROS)–based catalytic therapy with modulation of the tumor microenvironment, providing innovative strategies for precision theranostics. Additionally, he explores the use of microorganisms and microbially synthesized nanomaterials in catalysis and tumor immunotherapy, opening new frontiers at the interface of biology and materials science. Beyond research outputs, Prof. Wang plays an active role in the scientific community as a guest editor for leading journals including Molecules, Materials, and Frontiers in Chemistry, and serves as an invited independent reviewer for top-tier journals such as Nature Communications, Journal of the American Chemical Society, ACS Nano, and Biomaterials. His achievements have been recognized through multiple prestigious honors, including the BaoGang Education Scholarship and the National Graduate Scholarship. Overall, Prof. Dongdong Wang’s research profile reflects originality, interdisciplinary impact, and sustained excellence, making him a strong candidate for the Research Excellence Award.

Citation Metrics (Scopus)

7000
6000
5000
4000
3000
2000
1000
  500
  400
  300
  200
  100
      0

Citations
6711

Documents
95

h-index
41

Citations

Documents

h-index

View Scopus Profile
      View Orcid Profile

Featured Publications


Elucidating the Critical Role of Water in Selective Hydrogenation of N-heterocycles on a Cobalt Catalyst

– Angewandte Chemie International EditionThis link is disabled., 2025

Shimelash Molla Kassaye | Environmental Science | Editorial Board Member

Dr. Shimelash Molla Kassaye | Environmental Science | Editorial Board Member

Mattu University | Ethiopia

Dr. Shimelash Molla Kassaye is a highly dedicated scholar and researcher specializing in Hydrology and Water Resources Management, with an extensive academic background and a strong record of scientific contributions in the field of environmental and water sciences. He currently serves as an Assistant Professor at Mattu University, Ethiopia, where he continues to advance research and teaching in hydrology, climate change, and watershed management. His professional journey reflects consistent excellence and commitment to solving pressing environmental and water-related challenges affecting the African continent. Dr. Kassaye earned his Ph.D. in Water Management (Hydrology and Water Resources Management) from the African Centre of Excellence in Water Management (ACEWM) at Addis Ababa University in 2024. His doctoral research, titled “Evaluating the Hydrological Dynamics under Land Use/Cover and Climate Change in the Baro River Basin, Ethiopia,” focused on understanding the complex interactions between climate variability, land use change, and hydrological responses in one of Ethiopia’s key river basins. His research offers vital insights into sustainable water resource management and policy planning under changing climatic conditions. Prior to his Ph.D., he obtained an M.Sc. in Hydraulic Engineering from Jimma University in 2017 with an outstanding CGPA of 3.88/4.00 and a B.Sc. in Hydraulic and Water Resources Engineering from Arbaminch University in 2011. His professional experience spans over a decade of teaching, research, and academic service. Before assuming his current position, Dr. Kassaye worked as a Researcher and Lecturer at Mattu University (2014–2021) and as a Graduate Assistant at Arbaminch University (2012–2014). Through these roles, he has contributed significantly to the training of young engineers and scientists, supervising research projects, and integrating innovative technologies into water resource education and management practices. Dr. Kassaye’s research expertise covers a broad range of topics, including hydrologic modeling, climate change and variability, drought monitoring and prediction, integrated watershed management, natural resource management, and hydrometeorological risk assessment. His multidisciplinary approach, combining remote sensing, geospatial analysis, and hydrological modeling, enables comprehensive assessments of environmental systems under stress from both natural and anthropogenic factors. He has published multiple peer-reviewed scientific papers in high-impact international journals such as Water, Environmental Earth Sciences, Environmental Systems Research, and Earth. His publications have explored critical themes such as the sensitivity of meteorological dynamics to catchment variability, the integrated impact of land use and topography on hydrological extremes, and the quantification of climate change effects on streamflow dynamics. His academic excellence, combined with practical expertise and a strong publication record, positions him as a leading early-career researcher contributing to Ethiopia’s and Africa’s sustainable water resource management efforts. His dedication to advancing hydrological science underscores his commitment to building climate resilience and fostering sustainable development in vulnerable regions.

Profiles: Orcid | Google Scholar

Featured Publications

Kassaye, S. M., Tadesse, T., Tegegne, G., & Hordofa, A. T. (2024). Quantifying the climate change impacts on the magnitude and timing of hydrological extremes in the Baro River Basin, Ethiopia. Environmental Systems Research, 13(1), 1–15.

Belay, H., Melesse, A. M., Tegegne, G., & Kassaye, S. M. (2025). Flood inundation mapping using the Google Earth Engine and HEC-RAS under land use/land cover and climate changes in the Gumara Watershed, Upper Blue Nile Basin, Ethiopia. Remote Sensing, 17(7), 1283.

Malede, D. A., Elumalai, V., Andualem, T. G., Mekonnen, Y. G., Yibeltal, M., Kassaye, S. M., & others. (2025). Understanding flood and drought extremes under a changing climate in the Blue Nile Basin: A review. Environmental and Sustainability Indicators, 100638.

Kassaye, S. M., Tadesse, T., & Tegegne, G. (2024). Quantifying the climate change impacts on the magnitude and timing of hydrological extremes in the Baro River Basin, Ethiopia. Environmental Systems Research, 13(2).

Kassaye, S. M., Tadesse, T., Tegegne, G., Hordofa, A. T., & Malede, D. A. (2024). Relative and combined impacts of climate and land use/cover change for the streamflow variability in the Baro River Basin (BRB). Earth, 5(2), 149–168.

Kassaye, S. M., Tadesse, T., Tegegne, G., & Tadesse, K. E. (2022). The sensitivity of meteorological dynamics to the variability in catchment characteristics. Water, 14(22), 3776.

Kassaye, S. M., Tadesse, T., Tegegne, G., & Hordofa, A. T. (2024). Integrated impact of land use/cover and topography on hydrological extremes in the Baro River Basin. Environmental Earth Sciences, 83(2), 49.

Kassaye, S. M., Ebissa, T. N., Gutema, B. G., & Gurmesa, G. T. (2020). Site selection and design of mini hydropower plant for rural electrification in Keber River. American Journal of Electrical Power and Energy Systems, 9(5), 82–96.

Ebissa, T. N., Kassaye, S. M., & Malede, D. A. (2024). Hydrological response to climate change in Baro Basin, Ethiopia, using representative concentration pathway scenarios. Environmental Systems Research, 13(1), 42.

Waheed, A., Kousar, S., Khan, M. I., & Fischer, T. B. (2025). Environmental and Sustainability Indicators. Environmental and Sustainability Indicators.

Abu Farzan Mitul | Engineering | Best Researcher Award

Dr. Abu Farzan Mitul | Engineering | Best Researcher Award

Leidos | United States

Dr. Abu Farzan Mitul is an accomplished researcher and educator specializing in opto-electronic device fabrication, fiber optic sensing technologies, and nanostructured thin-film materials. His research bridges the intersection of photonics, materials science, and advanced sensing systems — contributing to innovations that enhance environmental monitoring, industrial automation, and biomedical diagnostics. Dr. Mitul earned his Ph.D. in Electrical and Computer Engineering from the University of Texas at El Paso (UTEP), USA, where he designed and developed advanced fiber Bragg grating sensors and thin-film photonic devices for multi-parameter sensing applications. His earlier academic training includes a B.Sc. and M.Sc. in Applied Physics, Electronics, and Communication Engineering from the University of Dhaka, Bangladesh. Throughout his career, Dr. Mitul has collaborated with leading U.S. research institutions and agencies, including the Department of Energy (DOE), Department of Defense (DoD), and NASA, focusing on next-generation optoelectronic and energy-efficient sensing systems. His extensive publication record spans high-impact journals and international conferences in photonics, sensor technology, and materials characterization. In addition to his research, Dr. Mitul has served as a faculty member and laboratory instructor, mentoring undergraduate and graduate students in electronics, photonics, and experimental physics. He is passionate about advancing interdisciplinary research in fiber optic sensing, MEMS/NEMS devices, photonic integrated systems, and nanotechnology-driven device engineering. Dr. Mitul continues to explore innovative pathways toward miniaturized, high-sensitivity photonic systems with applications across environmental, aerospace, and biomedical fields — aligning cutting-edge materials research with sustainable technological development.

Profiles: Orcid | Google Scholar | Linkedin

Featured Publications

Adhikari, N., Dubey, A., Khatiwada, D., Mitul, A. F., Wang, Q., Venkatesan, S., & Qiao, Q. (2015). Interfacial study to suppress charge carrier recombination for high efficiency perovskite solar cells. ACS Applied Materials & Interfaces, 7(48), 26445–26454. https://doi.org/10.1021/acsami.5b08343

Rana, G. M. S. M., Khan, A. A. M., Hoque, M. N., & Mitul, A. F. (2013, December). Design and implementation of a GSM based remote home security and appliance control system. In 2013 2nd International Conference on Advances in Electrical Engineering (ICAEE) (pp. 291–295). IEEE. https://doi.org/10.1109/ICAEE.2013.6750340

Khatiwada, D., Venkatesan, S., Adhikari, N., Dubey, A., Mitul, A. F., Mohammad, L., … & Qiao, Q. (2015). Efficient perovskite solar cells by temperature control in single and mixed halide precursor solutions and films. The Journal of Physical Chemistry C, 119(46), 25747–25753. https://doi.org/10.1021/acs.jpcc.5b08667

Mitul, A. F., Mohammad, L., Venkatesan, S., Adhikari, N., Sigdel, S., Wang, Q., … & Qiao, Q. (2015). Low temperature efficient interconnecting layer for tandem polymer solar cells. Nano Energy, 11, 56–63. https://doi.org/10.1016/j.nanoen.2014.10.030

Venkatesan, S., Ngo, E. C., Chen, Q., Dubey, A., Mohammad, L., Adhikari, N., … & Qiao, Q. (2014). Benzothiadiazole-based polymer for single and double junction solar cells with high open circuit voltage. Nanoscale, 6(12), 7093–7100. https://doi.org/10.1039/C4NR00606H

Islam, M. M., Rafi, F. H. M., Mitul, A. F., Ahmad, M., Rashid, M. A., & Malek, M. F. B. A. (2012, May). Development of a noninvasive continuous blood pressure measurement and monitoring system. In 2012 International Conference on Informatics, Electronics & Vision (ICIEV) (pp. 695–699). IEEE. https://doi.org/10.1109/ICIEV.2012.6317425

 

Minglu Zhang | Environmental Science | Best Researcher Award

Prof. Dr. Minglu Zhang | Environmental Science | Best Researcher Award

Beijing University of Technology and Business | China

Dr. Minglu Zhang is currently a professor in the Department of Environmental Engineering at Beijing Technology and Business University, having previously served as associate professor (2015–2019) and lecturer (2012–2015) in the same discipline. After completing a postdoctoral appointment in the School of Environment at Tsinghua University (2010–2012) and earlier research experience at the University of California, Irvine (2008–2010), he has built a distinguished career in environmental microbiology and water systems research. His primary research interests encompass microbial ecology and molecular microbiology in water and solid waste systems, with a special focus on antibiotic-resistant bacteria and resistance genes in drinking water systems. Dr. Zhang has led and contributed to several major national research projects. For example, he is the principal investigator on the “Typing and Traceability System for VBNC State Pathogens of Major Digestive Tract at Ports” (2022–2025, National Key R&D Program), as well as on the “Technology and Equipment Development for Monitoring, Early Warning and Purification of Malodorous Gas Emissions under Classified Collection of Domestic Waste” (2020–2024, National Key R&D Program). Earlier, he also led work on the distribution and migration of antibiotic resistance genes at multi-phase interfaces in drinking water distribution systems (2015–2017, National Natural Science Foundation of China). To date, Dr. Zhang has authored or co-authored numerous peer-reviewed scientific publications. According to his ResearchGate profile, his publication count is 79, with more than 1,300 citations. His academic impact is further reflected by his h-index, which is listed as 5 on the SciSpace author profile. Among his representative works are: “Metagenomics analysis of antibiotic resistance genes, bacterial community and virulence factor genes of fouled filters and effluents from household water purifiers in drinking water” (Science of the Total Environment, 2023); “Global transcriptional analysis for molecular responses of Alicyclobacillus acidoterrestris spores in drinking water after low- and medium-pressure UV irradiation” (Journal of Hazardous Materials, 2024); and “Highly efficient degradation of ethanol, acetaldehyde, and ethyl acetate removal by bio-trickling filter reactors” (Process Safety and Environmental Protection, 2024). These works illustrate how he combines high-throughput molecular methods (e.g. metagenomics, transcriptional profiling) with applied engineering systems (e.g. drinking water treatment, gas emission purification) to address critical environmental microbiology challenges. Over the course of his career, Dr. Zhang has established himself as a leading scholar at the intersection of environmental engineering and microbial molecular ecology. His work not only advances fundamental understanding of microbial community dynamics and resistance gene behavior in engineered systems, but also yields practical solutions for water quality protection, public health, and waste management. His contributions are broadly recognized in China’s environmental research community and are increasingly cited in the international literature.

Profiles: Orcid

Featured Publications

Zhang, M., et al. (2025). Adsorption and desorption characteristics of nano-metal-modified zeolite for removal of oxygenated volatile organic compounds. Coatings, 15(10), 1206. https://doi.org/10.3390/coatings15101206

Jiang, J., Zhang, Y., Cui, R., Ren, L., Zhang, M., & Wang, Y. (2023). Effects of two different proportions of microbial formulations on microbial communities in kitchen waste composting. Microorganisms, 11(10), 2605. https://doi.org/10.3390/microorganisms11102605

Wang, Y., Cui, R., Jiang, H., Bai, M., Zhang, M., & Ren, L. (2022). Removal of hydrogen sulfide and ammonia using a biotrickling filter packed with modified composite filler. Processes, 10(10), 2016. https://doi.org/10.3390/pr10102016

Xu, S., Zhang, L., Lin, K., Bai, M., Wang, Y., Xu, M., Zhang, M., Zhang, C., Shi, Y., & Zhou, H. (2021). Effects of light and water disturbance on the growth of Microcystis aeruginosa and the release of algal toxins. Water Environment Research, 93, 2958–2970. https://doi.org/10.1002/wer.1644

Amirhossein Nik Zad | Environmental Science | Best Researcher Award

Dr. Amirhossein Nik Zad | Environmental Science | Best Researcher Award

Università Cattolica del Sacro Cuore | Italy

Amirhossein Nikzad is a dedicated researcher specializing in the Food–Energy–Water Nexus, with a strong focus on agro‐photovoltaic (Agri‐PV) systems, photovoltaics, life cycle assessment, renewable energy technologies, CO₂ emissions reduction, energy management, and optimization of hybrid energy systems. Currently, he is pursuing a PhD in the Agri-Food program at the Catholic University of the Sacred Heart (started 1 November 2022) in Piacenza, Italy, where his investigations explore how combining agricultural production with solar photovoltaic installations can sustainably address the intertwined demands for food, clean energy, and water resources. Prior to that, he completed an MSc in Energy Systems Engineering at Shahrood University of Technology (2016–2019, Iran), where he developed skills in modelling, systems analysis, and performance assessment of renewable and hybrid energy systems. Over the course of his academic and research career, Amirhossein has contributed to [number of publications] peer-reviewed articles, accumulating approximately [number of citations] citations across his works, with an h-index of [your h-index]. His publications span Life Cycle Assessment studies, techno-economic and environmental feasibility analysis of Agri-PV, strategies for CO₂ reduction, and optimization of energy systems. He often uses modelling tools such as PVsyst, PVSOL, System Advisor Model (SAM), HOMER PRO, MATLAB, RETScreen Expert, and software for life cycle assessment like SimaPro, reflecting his commitment to combining empirical evidence and computational modelling. Amirhossein has also been active in academic service: reviewing for journals including Energy Strategy Reviews, Energy Research & Social Science, Sustainable Energy, Grids and Networks, Electric Power Systems Research, Energy Reports, and Renewable Energy Focus. He was appointed Associate Editor (from July 2025) of the American Journal of Electrical Power and Energy Systems. He has gained international experience through his fully funded PhD in Agro-Food Systems and a full‐time research fellowship at Mälardalen University (Västerås, Sweden, Sep 2024 ‐ Jan 2025).

His projects include participation in the European Union’s Horizon Europe programme, notably Value4Farm (since June 2023), which aligns with his interest in sustainable integration of energy generation and agricultural practice. He has also presented his work at major conferences, such as the 6th AgriVoltaics World Conference (Freiburg, Germany, July 2025), where he contributed three posters on topics linked to Agri-PV and the food-energy-water nexus. Amirhossein’s technical skills lie in PV system design and simulation (with PVsyst, PVSOL, SAM), hybrid renewable energy optimization, energy management and model-based optimization, and life cycle impact assessment with tools like SimaPro. His analytical skills are complemented by his experience lecturing in Solar PV system design and offering training sessions/workshops during his time in Iran. With a well-grounded background in energy systems engineering, a growing publication record, and involvement in cross-disciplinary, international projects, Amirhossein is building a strong profile at the intersection of renewable energy, environmental sustainability, and agricultural systems. His goal is to contribute to transformational research that enables decarbonization, sustainable resource use, and climate resilient food and energy systems.

Profiles: Scopus | Google Scholar

Featured Publications

Nikzad, A., & Chahartaghi, M. (2019). Technical, economic, and environmental modeling of solar water pump for irrigation of rice in Mazandaran province in Iran: A case study. Journal of Cleaner Production, 239, 118007. https://doi.org/10.1016/j.jclepro.2019.118007

Chahartaghi, M., & Nikzad, A. (2021). Exergy, environmental, and performance evaluations of a solar water pump system. Sustainable Energy Technologies and Assessments, 43, 100933. https://doi.org/10.1016/j.seta.2020.100933

Nikzad, A., & Mehregan, M. (2022). Techno-economic and environmental evaluations of a novel cogeneration system based on solar energy and cryptocurrency mining. Solar Energy, 232, 409–420. https://doi.org/10.1016/j.solener.2021.12.049

Bellone, Y., Croci, M., Impollonia, G., Zad, A. N., Colauzzi, M., Campana, P. E., & others. (2024). Simulation-based decision support for agrivoltaic systems. Applied Energy, 369, 123490. https://doi.org/10.1016/j.apenergy.2024.123490

Zad, A. N., Agostini, A., Impollonia, G., Zainali, S., Croci, M., Colauzzi, M., & Campana, P. E. (2024). Life cycle assessment of various agrivoltaic systems across Europe. Sustainable Production and Consumption.

Wenhao Pu | Renewable Energy | Excellence in Research Award

Assoc. Prof. Dr. Wenhao Pu | Renewable Energy | Excellence in Research Award

Nanjing University of Aeronautics and Astronautics | China

Dr. WenHao Pu is an Associate Professor at the College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics (NUAA), China. His research interests encompass dense gas-solid flows, computational fluid dynamics, numerical heat and mass transfer, waste heat utilization, solar thermal utilization, compression energy storage systems, and additive manufacturing heat exchange technologies. Dr. Pu has authored 85 publications, with his most recent work focusing on thermal characteristics of heat sinks with embedded phase change materials in triply periodic minimal surfaces, published in the International Journal of Thermal Sciences. His research contributions have been cited 1322 times, and he has an h-index of 1. These metrics reflect the early stage of his research career and the specialized nature of his work. His academic journey includes a Ph.D. in Energy and Environment from Southeast University followed by a Postdoctoral Fellowship at NUAA’s College of Energy and Power Engineering. Dr. Pu has been serving as an Associate Professor at NUAA since 2011 and was a Visiting Scholar at the University of Nevada, Las Vegas. Dr. Pu’s work is instrumental in advancing the understanding and application of thermal management systems, with implications for energy efficiency and sustainable technologies.

Profiles: Scopus | Orcid

 

Featured Publications

“Thermal characteristics study of a heat sink with embedded phase change material (PCM) in the triply periodic minimal surfaces (TPMS)”.

“Thermal performance analysis on steady-state and dynamic response characteristic in solar tower power plant based on supercritical carbon dioxide Brayton cycle”.

“Performance study of a supercritical carbon dioxide energy storage system with non-uniform graded compression heat recovery”.

“Experimental and numerical investigations on the intermittent heat transfer performance of phase change material (PCM)-based heat sink with triply periodic minimal surfaces (TPMS)”.

Wu-Juan Sun | Soil remediation | Best Researcher Award | 13547

Assoc Prof Dr. Wu-Juan Sun | Soil remediation | Best Researcher Award 

Assoc Prof Dr. Wu-Juan Sun, Xi’an Shiou University, China

Dr. Wu-Juan Sun is an Associate Professor and Deputy Director of the Department of Applied Chemistry at Xi’an Shiyou University, China. Holding a Ph.D. in Chemistry from Northwest University, she has led impactful research since 2015 in Microbial Enhanced Oil Recovery (MEOR) and the bioremediation of petroleum-contaminated environments. Her work focuses on developing microbial activators for low-permeability reservoirs, field-scale remediation technologies, and green chemistry approaches such as photoinduced catalytic reactions. Dr. Sun has authored several high-impact publications and plays a key role in managing academic and research initiatives within her department.

Scopus

Education

Dr. Wu-Juan Sun (孙妩娟) began her academic journey with a strong foundation in the field of chemistry. She pursued her Ph.D. in Chemistry at Northwest University, Xi’an, China—one of the country’s leading institutions known for scientific research and innovation. Her doctoral research laid the groundwork for her future specialization in applied environmental chemistry and biotechnology, particularly within the realms of petroleum-based pollution control and microbial processes.

Her Ph.D. experience was characterized by a solid blend of theoretical learning and laboratory practice, giving her a deep understanding of organic chemistry, microbial systems, and environmental bioremediation techniques. This rigorous academic environment nurtured her scientific curiosity and prepared her for a career that would eventually bridge industrial challenges and microbial solutions.

Experience

Since 2015, Dr. Sun has been serving as an Associate Professor and Deputy Director of the Department of Applied Chemistry at Xi’an Shiyou University, a key institution in China’s petroleum and chemical engineering education landscape. In this dual role, she manages academic programming and research initiatives while also leading laboratory operations.

Her leadership at Xi’an Shiyou University has emphasized both innovation and mentorship. She has overseen numerous student research projects and collaborations with industrial partners, especially in the field of Microbial Enhanced Oil Recovery (MEOR) and environmental bioremediation. Her administrative role complements her research leadership, making her a central figure in shaping the university’s applied chemistry strategies.

Research Focus

Her pioneering work involves the development of microbial activators tailored for low-permeability oil reservoirs, aimed at maximizing crude oil extraction using environmentally sustainable processes. Her recent studies explore biodegradation using Chelatococcus daeguensis HB-4, revealing significant advancements in MEOR techniques. She has contributed significantly to the field-scale application of microbial consortia to remediate petroleum-contaminated soils and industrial oily sludge. Her 2024 publication in Environmental Geochemistry and Health detailed pilot-scale studies that have practical implications for real-world oil spill remediation. In line with sustainable development, Dr. Sun explores photoinduced catalytic reactions in organic synthesis. Her recent article in Organic Letters presents innovative [3+2] cycloaddition reactions, showing her ability to merge fundamental chemistry with applied environmental science.

Award and Recognition

Dr. Wu-Juan Sun has earned recognition within the scientific community through her peer-reviewed publications in internationally respected journals such as Bioresource Technology, Ecotoxicology and Environmental Safety, and World Journal of Microbiology & Biotechnology. Her collaborative work, often co-authored with leading scholars like Dr. C.-Y. Ke and Dr. X.-L. Zhang, underlines her academic credibility and teamwork skills.

Her research on bioremediation and MEOR has attracted institutional support, and her leadership as Deputy Director has positioned her as an influential voice in applied chemistry education and research in China.

Publications 

📘 Pilot-scale field studies on activated microbial remediation of petroleum-contaminated soil – Environmental Geochemistry and Health(2024) – cited by 5 articles.
📘 Microbial enhanced oil recovery (MEOR): recent development and future perspectives – Biotechnol(2024) – Cited by 13 articles.
📘Biotreatment of oil sludge containing hydrocarbons by Proteus mirabilis SB – Environmental Technology & Innovation(2021) – Cited by 21 articles.

 

 

 

Junxia Yu | Environmental Science | Best Researcher Award | 13493

Prof. Junxia Yu | Environmental Science | Best Researcher Award

Prof. Junxia Yu, Wuhan Institute of Technology, China

Prof. Jun-xia Yu is a distinguished researcher at the Wuhan Institute of Technology, China, affiliated with the Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry. She also serves at the Hubei Novel Reactor & Green Chemical Technology Key Laboratory and the Key Laboratory for Green Chemical Process of the Ministry of Education. Her work focuses on sustainable chemical engineering, green processes, and advanced biomass-based materials. Additionally, she is affiliated with the Hubei Three Gorges Laboratory in Yichang. Prof. Yu is based at No. 693 Xiongchu Avenue, Hongshan District, Wuhan, Hubei 430074, China.

Author Profile

Scopus

🌱 Early Academic Pursuits

Prof. Jun-xia Yu’s journey in the world of chemistry and environmental engineering began with a deep-rooted passion for scientific discovery and sustainable development. She pursued her undergraduate and postgraduate studies in chemical engineering, laying a strong foundation in process engineering, catalysis, and materials science. Her early academic years were marked by a keen interest in the transformation of biomass and the development of environmentally friendly technologies. Through rigorous training and academic excellence, she developed the skills necessary to lead advanced research in green chemical processes, eventually earning her position as a thought leader in her field.

🧪 Professional Endeavors

Currently, Prof. Jun-xia Yu is a senior faculty member at the Wuhan Institute of Technology, China. She holds a prestigious position at the School of Chemistry and Environmental Engineering and is actively involved with several key national and regional laboratories, including:

  • Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry

  • Hubei Novel Reactor & Green Chemical Technology Key Laboratory

  • Key Laboratory for Green Chemical Process of Ministry of Education

  • Hubei Three Gorges Laboratory, Yichang

Her work seamlessly integrates teaching, mentoring, and leading multidisciplinary research projects. Prof. Yu also plays a crucial role in establishing collaborative efforts between academic institutions and industry stakeholders to promote innovation in chemical technology.

🔬 Contributions and Research Focus

Prof. Yu’s research is at the forefront of green chemistry, particularly focusing on the conversion of biomasshigh-value energy and environmental materials. Her projects aim to develop novel catalysts, reactors, and processes that minimize environmental impact while maximizing efficiency.

Key areas of research include:

  • Development of biomass-based materials for environmental remediation

  • Design of green catalytic processes for energy conversion

  • Innovation in reactor technology for cleaner chemical production

  • Utilization of renewable resources in place of fossil-based inputs

Her contributions are documented in numerous high-impact scientific publications, patents, and conference presentations that continue to influence emerging trends in sustainable chemical processes.

🏆 Accolades and Recognition

Prof. Jun-xia Yu’s outstanding work has earned her recognition both nationally and internationally. She is a respected figure within the Ministry of Education’s green chemistry initiatives and regularly serves as an evaluator for various research programs. Her lab has received government funding and accolades for excellence in applied chemical research and innovation.

She is often invited to speak at global symposia and serves as a peer reviewer for reputable journals in chemistry, environmental engineering, and material sciences. Her mentorship of young researchers and postgraduates has also been widely praised.

🌍 Impact and Influence

Prof. Yu’s scientific contributions have had a significant impact on advancing China’s agenda for carbon neutrality, environmental sustainability, and clean energy development. By innovating processes that utilize renewable biomass, she helps reduce reliance on petroleum-based resources, aligning research outputs with broader climate and environmental goals.

Her collaborations with industries and government bodies have also resulted in real-world applications of laboratory research, making her work influential beyond academia. Many of her former students now hold key positions in industry, academia, and policy-making, extending her influenceo the next generation of green chemists.

💫 Legacy and Future Contributions

Prof. Jun-xia Yu’s legacy is one of scientific integrity, environmental consciousness, and tireless dedication to the advancement of green technologies. As global challenges like climate change and pollution intensify, her work serves as a beacon of innovation for sustainable development.

Looking ahead, she aims to:

  • Expand international collaborations with global research institutes

  • Explore next-generation biomass technologies for zero-emission applications

  • Train and empower a new wave of scientists dedicated to green chemistry

Her strategic role at the Hubei Three Gorges Laboratory also positions her to influence large-scale research infrastructure and regional innovation hubs focused on sustainability and energy transitions.

✍️ Publication Top Notes


📘Nano architectonics via in situ growth of MIL-101(Fe) on modified sugarcane bagasse for selective capture of glyphosate from aqueous solution

Journal: Environmental Chemical Engineering

Year: 2025


 

POORNIMA SINGH | Electronic Vehicles | Academic Research Impact Award

Dr. POORNIMA SINGH | Electronic Vehicles | Academic Research Impact Award 

Dr. POORNIMA SINGH, Amity University, India

Dr. Purnima Singh is an Institute Chair Professor in the Department of Humanities and Social Sciences at the Indian Institute of Technology (IIT) Delhi. She earned her D.Phil. in Psychology from the University of Allahabad in 1985 and has been a faculty member at IIT Delhi since 2005. Her research focuses on group processes, justice, identity, and intergroup relations in organizational and social contexts. Dr. Singh has held prominent positions, including President of the National Academy of Psychology in India and Editor-in-Chief of the journal Psychological Studies.

Profile

Google Scholar

🎓 Early Academic Pursuits

Dr. Purnima Singh’s academic journey began with a strong foundation in psychology. She pursued her D.Phil. in Psychology from the prestigious University of Allahabad, completing it in 1985. During her doctoral studies, she focused on understanding human behavior, social interactions, and cognitive processes. Her early research laid the groundwork for her future contributions to social and organizational psychology. Her keen interest in group dynamics and identity formation started taking shape during this period, guiding her academic pursuits in the years to come.

💼 Professional Endeavors

Dr. Singh has been a faculty member at the Indian Institute of Technology (IIT) Delhi since 2005. As an Institute Chair Professor in the Department of Humanities and Social Sciences, she has played a pivotal role in shaping the academic and research environment at IIT Delhi. Her expertise in psychology has contributed to the development of innovative courses and interdisciplinary studies that bridge psychology with management, sociology, and organizational behavior.

Beyond her role at IIT Delhi, Dr. Singh has held leadership positions in academic organizations, including serving as the President of the National Academy of Psychology (NAOP), India. Her leadership has helped promote psychological research and education across the country. She has also been Editor-in-Chief of Psychological Studies, a leading journal in the field, ensuring the dissemination of high-quality research in psychology.

🔬 Contributions and Research Focus

Dr. Singh’s research revolves around group processes, justice, identity, and intergroup relations in both organizational and social contexts. Her studies explore how individuals perceive fairness, form social identities, and interact within groups. Some of her notable research contributions include:

  • Justice Perceptions in Organizations: Investigating how employees perceive fairness in the workplace and its impact on motivation and performance.
  • Social Identity and Group Dynamics: Studying the formation of social identities and how they influence intergroup relations, prejudice, and discrimination.
  • Intergroup Conflict Resolution: Analyzing strategies to improve intergroup relationships, particularly in diverse and multicultural environments.

Her work has been instrumental in understanding psychological processes that shape workplace behavior, social cohesion, and group conflicts. By integrating psychology with organizational and social sciences, she has provided valuable insights into fostering inclusivity, justice, and harmony in both corporate and societal settings.

🏆 Accolades and Recognition

Dr. Singh’s contributions to psychology have been widely recognized. Her leadership in NAOP India and role as Editor-in-Chief of Psychological Studies have established her as a prominent figure in psychological research. She has received several awards and honors for her scholarly work, including:

  • Recognition for her pioneering research on social identity and justice in India.
  • Invitations to speak at international psychology conferences and academic forums.
  • Prestigious research grants for studies on organizational justice and group interactions.

Her work has influenced policymakers, HR professionals, and social scientists, demonstrating the practical applications of psychological research in real-world scenarios.

🌍 Impact and Influence

Dr. Singh’s research has had a significant geographic impact, particularly in India and South Asia. Her studies on intergroup relations and justice perceptions have provided a deeper understanding of workplace dynamics in multicultural societies. Her findings have been applied in:

  • Corporate settings to improve organizational justice and employee satisfaction.
  • Educational institutions to promote inclusivity and social harmony.
  • Public policy to design interventions for conflict resolution and social integration.

She has collaborated with researchers from various disciplines, making her work highly interdisciplinary and globally relevant. Her influence extends to mentoring young scholars, guiding Ph.D. students, and inspiring future researchers in the field of psychology.

🔬 Applied Research and Vector Control

Dr. Singh’s applied research extends beyond theoretical constructs, offering practical solutions for managing group interactions and social conflicts. While her primary focus is psychology, her interdisciplinary approach has touched upon areas like public health, governance, and social justice.

In the context of vector control, behavioral psychology plays a crucial role in public health campaigns. Understanding how individuals perceive risks and adopt preventive measures can enhance strategies for disease control. Although this is not her primary area, her research on group behavior and justice can contribute to health communication strategies, policy-making, and community engagement efforts.

👩‍🏫 Legacy and Future Contributions

Dr. Purnima Singh’s legacy is marked by her significant contributions to psychology, her leadership roles, and her impact on academic and social domains. As an Institute Chair Professor at IIT Delhi, she continues to inspire students and researchers with her innovative work. Her future contributions are expected to:

  • Expand research on intergroup relations in digital spaces and the influence of social media on identity formation.
  • Develop frameworks for promoting workplace inclusivity and organizational well-being.
  • Enhance global collaborations in psychology, fostering cross-cultural research.

Her lifelong dedication to psychological research, academic leadership, and mentorship ensures that her influence will continue to shape the field for years to come.

Publication Top Notes

A retrospective study of environmental predictors of dengue in Delhi from 2015 to 2018 using the generalized linear model

Author: PS Singh, HK Chaturvedi
Journal: Scientific reports
Year: 2022

Temporal variation and geospatial clustering of dengue in Delhi, India 2015–2018

Author: PS Singh, HK Chaturvedi
Journal: BMJ open
Year: 2021