Heer Wang | Environmental and Sustainable Materials | Research Excellence Award

Dr. Heer Wang | Environmental and Sustainable Materials | Research Excellence Award 

Kunming University of Science and Technology | China

Dr. Heer Wang is an emerging scholar in applied economics whose research lies at the intersection of industrial transformation, climate change, labor mobility, and sustainable economic development. His work explores how evolving economic structures and environmental shocks shape household behavior, productivity, and long-term growth pathways, particularly within developing and transitional economies. By integrating rigorous microeconometric evaluation methods with rich empirical data, he contributes meaningful insights into how societies adapt to climate risks and structural shifts. A major strand of his research investigates the socioeconomic consequences of climate variability, especially extreme rainfall and its implications for rural livelihoods. His publications in leading journals such as Science of The Total Environment and Applied Economic Perspectives and Policy highlight how climate shocks influence labor mobility, household vulnerability, agricultural productivity, and consumption smoothing. His studies provide evidence-based perspectives that deepen the understanding of how rural communities manage risk, adjust labor allocation, and navigate long-term adaptation strategies under environmental uncertainty. Another important area of his work focuses on industrial structure upgrading and technological capability. Through theoretical and empirical analyses published in the Asian Journal of Technology Innovation, his research examines the depth and sophistication of structural transformation, revealing how technological capacity and sectoral linkages drive high-quality economic development. His work contributes to policy discussions on how emerging economies can enhance industrial competitiveness while maintaining sustainable growth. In addition to published work, he has developed several working papers addressing market integration, climate-induced behavioral responses, and the dynamics of agricultural adaptation. These studies reflect a consistent research theme: understanding how economic agents respond to shocks and incentives within rapidly evolving socioeconomic environments. His research portfolio is reinforced by participation in multiple interdisciplinary and national research projects funded by major institutions. These projects span topics such as digital economy development, fertility policy evaluation, labor mobility under technological disruption, climate risk prediction using artificial intelligence, and the economic implications of population aging. His role across these initiatives demonstrates strong capabilities in empirical modeling, policy analysis, and data-driven decision support. He brings expertise in microeconometrics, policy evaluation techniques, and quantitative analysis using software platforms such as Stata, R, and SPSS. His work contributes directly to academic knowledge, policymaking, and practical interventions aimed at improving resilience, enhancing productivity, and supporting sustainable economic progress. Overall, his research advances critical conversations on how economies can navigate structural change while adapting to environmental and demographic challenges.

Citation Metrics (Google Scholar)

100
   80
   60
   50
   40
   30
   20
   10
     5
     0

Citations
31

Documents
3

h-index
2

Citations

Documents

h-index


View Google Scholar Profile

Featured Publications

Heng Liu | Environmental and Sustainable Materials | Research Excellence Award

Mr. Heng Liu | Environmental and Sustainable Materials | Research Excellence Award

Qingdao University of Science and Technology | China

Prof. Heng Liu is an accomplished materials scientist and professor at Qingdao University of Science and Technology, widely recognized for his significant contributions to organometallic catalysis and polymer chemistry. He earned his Ph.D. in 2015 from the Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences (CAS), followed by productive postdoctoral research at the Technion – Israel Institute of Technology between 2015 and 2017. Upon returning to China, he served as an associate professor at CIAC before joining Qingdao University of Science and Technology as a full professor in 2020. Throughout his career, Prof. Liu has built an impressive portfolio of research achievements that reflect his scientific rigor, innovation, and leadership in advancing olefin and diene polymerization technologies. His research primarily focuses on the development of high-efficiency organometallic catalysts, the functionalization of polymers, and performance enhancement strategies for synthetic rubber materials—areas that hold major industrial relevance in the rubber, plastic, and advanced materials sectors. Prof. Liu has published 63 high-impact journal articles in prestigious publications such as Advanced Functional Materials, ACS Catalysis, Coordination Chemistry Reviews, Macromolecules, and other leading SCI-indexed platforms. His strong publication record is supported by a robust citation footprint in global scientific databases, reflecting the wide impact and recognition of his work within the research community. He has successfully led and participated in multiple funded research projects, including major grants from the National Natural Science Foundation of China (52573115, 22071236, 21801236), the Shandong Province Natural Science Foundation (ZR2024ME117), and the Taishan Scholar Foundation (202211165), demonstrating his capability to secure competitive funding for frontier research. Beyond academic projects, Prof. Liu has completed six consultancy and industry collaborations, reinforcing the practical applicability of his scientific innovations. He holds 18 patents, underscoring his commitment to translating research outcomes into technological advancements. His editorial contributions include serving on the editorial boards of Frontiers in Chemistry and China Synthetic Rubber Industry, where he supports scholarly communication and peer review in his field. Prof. Liu’s work is strengthened by active collaborations with researchers across institutions and countries, contributing to scientific progress through interdisciplinary engagement. With expertise spanning catalysis, polymer design, and advanced material fabrication, Prof. Liu continues to make substantial contributions to both fundamental science and industrial technology. His achievements, leadership, and innovation position him as a distinguished candidate for the Research Excellence Award.

Profile: Scopus | Orcid

Featured Publications

Polymer Chemistry (2025)

Zhang, H., Zhang, X., Zheng, H., Wang, F., Wei, X., Zhang, X., & Liu, H. (2025). Synthesis of α,ω-end hetero-functionalized polyisoprene via neodymium-mediated coordinative chain transfer polymerization. Polymer Chemistry. https://doi.org/10.1039/D4PY01452A

Journal of Applied Polymer Science (2025 – Nov 05)

Zheng, H., Zhang, H., Zhao, W., Wang, F., Zhang, X., & Liu, H. (2025). Controllable preparation of hydroxyl-terminated liquid polydiene rubber featuring high 1,4-content by neodymium-mediated coordinative chain transfer polymerizations strategy. Journal of Applied Polymer Science. https://doi.org/10.1002/app.57602

Journal of Applied Polymer Science (2025 – Mar 10)

Li, X., Zhang, X., Wang, F., Liu, W., Zhang, X., & Liu, H. (2025). Neodymium-mediated coordinative chain transfer homopolymerization of bio-based myrcene and copolymerization with butadiene and isoprene. Journal of Applied Polymer Science. https://doi.org/10.1002/app.56557

Macromolecules (2025 – Feb 25)

Wang, X., Ma, L., Dong, B., Zhang, C., Zhang, X., & Liu, H. (2025). Axial anagostic interaction in α-diimine nickel catalysts: An ultraefficient occupation strategy in suppressing associative chain transfers to achieve UHMWPEs. Macromolecules, 58(?), pages pending. https://doi.org/10.1021/acs.macromol.4c03244

Molecular Catalysis (2024)

Liu, X., Yang, Q., Zhang, C., Zhang, X., & Liu, H. (2024). 3,4-selective polymerization of isoprene by iron-based system: The key role of borate salts for enhancing catalytic activities and broadening 1,10-phenanthroline ligand scope. Molecular Catalysis, 114082. https://doi.org/10.1016/j.mcat.2024.114082

SSRN Preprint (2024)

Liu, H., Liu, X., Zhang, C., Yang, Q., & Zhang, X. (2024). 3,4-selective polymerization of isoprene by iron-based system: The key role of borate salts for enhancing catalytic activities and broadening 1,10-phenanthroline ligand scope [Preprint]. SSRN. https://doi.org/10.2139/ssrn.4690393

 

Amirhossein Nik Zad | Environmental Science | Best Researcher Award

Dr. Amirhossein Nik Zad | Environmental Science | Best Researcher Award

Università Cattolica del Sacro Cuore | Italy

Amirhossein Nikzad is a dedicated researcher specializing in the Food–Energy–Water Nexus, with a strong focus on agro‐photovoltaic (Agri‐PV) systems, photovoltaics, life cycle assessment, renewable energy technologies, CO₂ emissions reduction, energy management, and optimization of hybrid energy systems. Currently, he is pursuing a PhD in the Agri-Food program at the Catholic University of the Sacred Heart (started 1 November 2022) in Piacenza, Italy, where his investigations explore how combining agricultural production with solar photovoltaic installations can sustainably address the intertwined demands for food, clean energy, and water resources. Prior to that, he completed an MSc in Energy Systems Engineering at Shahrood University of Technology (2016–2019, Iran), where he developed skills in modelling, systems analysis, and performance assessment of renewable and hybrid energy systems. Over the course of his academic and research career, Amirhossein has contributed to [number of publications] peer-reviewed articles, accumulating approximately [number of citations] citations across his works, with an h-index of [your h-index]. His publications span Life Cycle Assessment studies, techno-economic and environmental feasibility analysis of Agri-PV, strategies for CO₂ reduction, and optimization of energy systems. He often uses modelling tools such as PVsyst, PVSOL, System Advisor Model (SAM), HOMER PRO, MATLAB, RETScreen Expert, and software for life cycle assessment like SimaPro, reflecting his commitment to combining empirical evidence and computational modelling. Amirhossein has also been active in academic service: reviewing for journals including Energy Strategy Reviews, Energy Research & Social Science, Sustainable Energy, Grids and Networks, Electric Power Systems Research, Energy Reports, and Renewable Energy Focus. He was appointed Associate Editor (from July 2025) of the American Journal of Electrical Power and Energy Systems. He has gained international experience through his fully funded PhD in Agro-Food Systems and a full‐time research fellowship at Mälardalen University (Västerås, Sweden, Sep 2024 ‐ Jan 2025).

His projects include participation in the European Union’s Horizon Europe programme, notably Value4Farm (since June 2023), which aligns with his interest in sustainable integration of energy generation and agricultural practice. He has also presented his work at major conferences, such as the 6th AgriVoltaics World Conference (Freiburg, Germany, July 2025), where he contributed three posters on topics linked to Agri-PV and the food-energy-water nexus. Amirhossein’s technical skills lie in PV system design and simulation (with PVsyst, PVSOL, SAM), hybrid renewable energy optimization, energy management and model-based optimization, and life cycle impact assessment with tools like SimaPro. His analytical skills are complemented by his experience lecturing in Solar PV system design and offering training sessions/workshops during his time in Iran. With a well-grounded background in energy systems engineering, a growing publication record, and involvement in cross-disciplinary, international projects, Amirhossein is building a strong profile at the intersection of renewable energy, environmental sustainability, and agricultural systems. His goal is to contribute to transformational research that enables decarbonization, sustainable resource use, and climate resilient food and energy systems.

Profiles: Scopus | Google Scholar

Featured Publications

Nikzad, A., & Chahartaghi, M. (2019). Technical, economic, and environmental modeling of solar water pump for irrigation of rice in Mazandaran province in Iran: A case study. Journal of Cleaner Production, 239, 118007. https://doi.org/10.1016/j.jclepro.2019.118007

Chahartaghi, M., & Nikzad, A. (2021). Exergy, environmental, and performance evaluations of a solar water pump system. Sustainable Energy Technologies and Assessments, 43, 100933. https://doi.org/10.1016/j.seta.2020.100933

Nikzad, A., & Mehregan, M. (2022). Techno-economic and environmental evaluations of a novel cogeneration system based on solar energy and cryptocurrency mining. Solar Energy, 232, 409–420. https://doi.org/10.1016/j.solener.2021.12.049

Bellone, Y., Croci, M., Impollonia, G., Zad, A. N., Colauzzi, M., Campana, P. E., & others. (2024). Simulation-based decision support for agrivoltaic systems. Applied Energy, 369, 123490. https://doi.org/10.1016/j.apenergy.2024.123490

Zad, A. N., Agostini, A., Impollonia, G., Zainali, S., Croci, M., Colauzzi, M., & Campana, P. E. (2024). Life cycle assessment of various agrivoltaic systems across Europe. Sustainable Production and Consumption.

Naseraldeen Asadalla | Environmental Science | Best Researcher Award

Naseraldeen Asadalla | Environmental Science | Best Researcher Award

Kuwait Institute for Scientific Research | Kuwait

Dr. Naseraldeen Asadalla’s research has focused on arid land ecology, invasive alien species, ecosystem restoration, and biodiversity assessment in the Arabian Peninsula and the GCC region. He has developed specialized expertise in species distribution modeling (MaxEnt), remote sensing, ecological indicators, and machine learning-based environmental data analysis. His Ph.D. research examined the dynamics of alien bird species, particularly the Common Myna in Bahrain, providing foundational insights into biodiversity trends in urban ecosystems. Building on this work, his recent research has concentrated on ecological modeling of plant and animal species in desert environments, with a focus on the influence of abiotic factors such as precipitation and dust storms on species distribution and habitat suitability. Dr. Asadalla has authored and co-authored over 12 peer-reviewed scientific publications in reputable journals including Restoration Ecology, Environmental Monitoring and Assessment, and the Journal of Arid Environments. His work has received over 185 citations (as of September 2025) and he holds an h-index of 7 (Scopus). His research has directly contributed to regional conservation strategies, such as the identification of green water zones using annual plants as ecological indicators and the development of habitat suitability models for native desert flora and vulnerable species like the Asian Houbara Bustard. In addition to his academic contributions, he is an active member of multi-disciplinary research teams at the Kuwait Institute for Scientific Research (KISR), playing a key role in nationally funded projects and the formulation of regional environmental policies. Dr. Asadalla continues to pursue applied ecological research by integrating remote sensing tools with conservation science to address environmental challenges associated with climate change, species displacement, and urban expansion across the Arabian Peninsula.

Profiles: Scopus | Orcid

Featured Publications  

Asadalla, N. B. A., Abdullah, M., Gharabi, Y., Mohan, M., Al Naabi, S., Al Ali, Z., Al Hashash, N., Srinivasan, S., Al Awadhi, T., & Abulibdeh, A. (2024). Predictive modeling of green water availability: The role of annual plants as an ecological indicator in dryland ecosystems. Journal of Arid Environments, 223, 105179.

Asadalla, N. B. A., & Marafi, M. (2023). Overlooked Colotis phisadia (Godart, 1819) (Lepidoptera: Pieridae) – A new record for the butterfly fauna of Kuwait with remarks on host plant. Entomologist’s Monthly Magazine, 159(1), 66–72.

Asadalla, N. B. A., Abdullah, M. M., Gharabi, Y., Mohan, M., Al Naabi, S., Srinivasan, S., & Al Awadhi, T. (2022). The use of annual plants as ecological indicators to identify locations with high levels of green water in arid ecosystems using remote sensing and MaxEnt modeling. SSRN Electronic Journal.

Asadalla, N. B. A., Abdullah, M. M., Al-Ali, Z. M., & Abdullah, M. T. (2021). Vegetation restoration targeting approach to identify the optimum environmental conditions for the restoration of native desert plants using remote sensing and MaxEnt modeling. Restoration Ecology, 29(6), e13425.

Al-Ali, Z., Abdullah, M., Asadalla, N. B. A., & Gholoum, M. (2020). A comparative study of remote sensing classification methods for monitoring and assessing desert vegetation using a UAV-based multispectral sensor. Environmental Monitoring and Assessment, 192, Article 370.

Abdullah, M. M., Assi, A. T., & Asadalla, N. B. A. (2019). Integrated ecosystem sustainability approach: Toward a holistic system of thinking of managing arid ecosystems. Open Journal of Ecology, 9(11), 493–508.

Asadalla, N. B. A., Abido, M. S., Abahussain, A., & Shobrak, M. (2015). Assembly of optimum habitats for Asian Houbara Bustard (Chlamydotis macqueenii) in the Arabian Peninsula: The vegetation aspects. International Journal of Biodiversity, 2015, Article 925093.

Richard Beach | Ecology | Best Researcher Award | 13648

Prof. Richard Beach | Ecology | Best Researcher Award 

University of Minnesota | United States

Professor Richard W. Beach is an internationally respected scholar and Professor Emeritus of English Education at the College of Education and Human Development, University of Minnesota. With a distinguished academic career spanning over five decades, Dr. Beach has been a pioneering voice in the fields of literacy education, literature pedagogy, digital media in education, and adolescent identity in English classrooms. He holds a B.A. in English from Wesleyan University, an M.A. in Education from Trinity College, and a Ph.D. in Education from the University of Illinois at Urbana-Champaign. Professor Beach is the author, co-author, or editor of 30 major academic books, most published by leading educational publishers such as Routledge, Teachers College Press, and the National Council of Teachers of English (NCTE). His body of work reflects a deep and sustained commitment to rethinking how literature, writing, media, and critical inquiry are taught in secondary and post-secondary classrooms. His books such as Teaching Literature to Adolescents, Teaching Climate Change to Adolescents, and Teaching to Exceed the English Language Arts Standards have become foundational texts in English teacher education and are widely used in teacher training programs internationally. His work has garnered broad academic recognition, with an estimated 4,000+ citations and an h-index of 30+, reflecting both the influence and reach of his scholarship across educational research domains. He has collaborated with prominent scholars and co-edited multidisciplinary volumes like Multidisciplinary Perspectives on Literacy Research, and continues to shape the discourse around literacy instruction, digital literacies, and critical pedagogy in the ELA classroom. Dr. Beach’s research is characterized by its responsiveness to changing cultural, technological, and ecological landscapes. He has advocated for student-centered approaches to learning that honor learners’ identities, social worlds, and real-world concerns. His recent work on teaching climate change and fostering critical digital literacies demonstrates a progressive and action-oriented vision for education.

Profiles:  Scopus | Google Scholar

Featured Publications

Beach, R. (1993). A teacher’s introduction to reader-response theories. Urbana, IL: National Council of Teachers of English.

Taylor, B. M., & Beach, R. W. (1984). The effects of text structure instruction on middle-grade students’ comprehension and production of expository text. Reading Research Quarterly, 19(2), 134–146.

Purves, A. C., & Beach, R. (1972). Literature and the reader: Research in response to literature, reading interests, and the teaching of literature. Urbana, IL: National Council of Teachers of English.

Newell, G. E., Beach, R., Smith, J., & VanDerHeide, J. (2011). Teaching and learning argumentative reading and writing: A review of research. Reading Research Quarterly, 46(3), 273–304.

Appleman, D., Beach, R., Simon, R., & Fecho, B. (2016). Teaching literature to adolescents (3rd ed.). New York, NY: Routledge.

Galda, L., & Beach, R. (2001). Response to literature as a cultural activity. Reading Research Quarterly, 36(1), 64–73.

Beach, R. (1976). Self-evaluation strategies of extensive revisers and nonrevisers. College Composition and Communication, 27(2), 160–164.