Suocheng Dong | Environmental and Sustainable Materials | Best Researcher Award

Prof. Suocheng Dong | Environmental and Sustainable Materials | Best Researcher Award

Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences | China

Prof. Dong Suocheng is a leading scholar in regional economic geography, ecological economics, and green development studies, widely recognized for his influential contributions to the understanding of resource–environment interactions and sustainable development pathways in China and across Eurasia. As a senior professor at the Institute of Geographic Sciences and Natural Resources Research (IGSNRR), Chinese Academy of Sciences, he has built a distinguished academic career centered on the theory, methodology, and empirical assessment of ecological economic systems, regional sustainable development, and the coupling mechanisms between urbanization, economic growth, and the ecological environment. His research spans a broad range of topics including regional ecological economic differentiation, circular economy models, eco-city construction, ecological civilization pathways, green development strategies, and the quantitative analysis of urban–environment coordination. He has contributed extensively to the development of frameworks for evaluating ecological risks, optimizing regional resource allocation, and guiding policy for cross-border sustainable development initiatives such as the Belt and Road, the China–Mongolia–Russia corridor, and regional integration across Northeast and Central Asia. Prof. Dong has led nearly one hundred major national-level, ministerial, and regional research projects, including key programs of the National Natural Science Foundation of China and strategic cooperation initiatives. His contributions have resulted in more than 360 academic publications, monographs, and research reports that have significantly shaped scholarly discourse and policy formulation in resource economics, environmental management, and regional planning. More than forty of his advisory reports have been acknowledged and adopted by national decision-making bodies, demonstrating his strong impact on high-level sustainable development policy. His influential publications include seminal works on the coupling coordination between urbanization and the eco-environment in Mongolia, ecological and socioeconomic risks in international infrastructure projects, spatial–temporal drivers of carbon emissions in interprovincial trade, and assessment of circular economy systems in energy-intensive industries. His research in Land Use Policy, Environmental Science & Technology, Sustainability, Journal of Geographical Sciences, and Resources Science has become central to the advancement of regional ecological economics and spatial sustainable development. Through decades of rigorous scholarship, multidisciplinary collaboration, and strategic policy engagement, Prof. Dong has established himself as a major contributor to the evolution of ecological economic theory, regional green development models, and the science–policy interface essential to achieving sustainable development in rapidly transforming regions.

Profile: Scopus

Featured Publications

Dong, S., Chen, C., & Li, Y. (2016). An investigation report on economic and social sciences in Northern China and its adjacent areas. Science Press.

Dong, S., & Sun, J. (2017). Regional sustainable development of Northeast and Central Asia. Science Press.

Dong, S., Zheng, J., Li, Y., Li, Z., Li, F., Jin, L., & Yang, Y. (2019). Quantitative analysis of the coupling coordination degree between urbanization and eco-environment in Mongolia. Chinese Geographical Sciences, 29(5), 861–871.

Dong, S., Yang, Y., Li, F.*, et al. (2018). An evaluation of the economic, social, and ecological risks of China-Mongolia-Russia high-speed railway construction and policy suggestions. Journal of Geographical Sciences, 28(7), 900–918.

Dong, S., Wang, Z., Li, Y., Li, F., Chen, F., & Cheng, H. (2017). Assessment of comprehensive effects and optimization of a circular economy system of coal power and cement in Kongtong District, Pingliang City, Gansu Province, China. Sustainability, 9(787). https://doi.org/10.3390/su9050787

Dong, S., Cheng, H., Guo, P., et al. (2016). Transportation industry patterns and strategy of the Belt and Road. Bulletin of the Chinese Academy of Sciences, 31(6), 663–670.

Dong, S., Huang, Y., Li, Z., et al. (2014). Economic development patterns and regional economic integration modes for the Silk Road Economic Zone. Resources Science, 36(12), 2451–2458.

Wu, Y., & Dong, S.* (2018). Quantifying urban land expansion dynamics through improved land management institution model—Application in Ningxia–Inner Mongolia, China. Land Use Policy, 78, 386–396.

 

Stella Girousi | Environmental Science | Women Researcher Award

Prof Dr. Stella Girousi | Environmental Science | Women Researcher Award 

Prof Dr. Stella Girousi | Aristotle University of Thessaloniki | Greece

Prof. Dr. Stella Girousi is a Professor of Analytical Chemistry at the Aristotle University of Thessaloniki, Greece, where she has been a faculty member since 1999. She earned her PhD in Analytical Chemistry in 1996 and specializes in developing innovative electroanalytical methods, particularly voltammetric techniques and biosensors. Her research focuses on environmental, biological, and food analysis, including the detection of nucleic acids, proteins, and genotoxic compounds, as well as drug-DNA interactions and DNA methylation using advanced nanomaterials and screen-printing technologies. Prof. Girousi has published extensively in high-impact journals, significantly advancing the fields of analytical chemistry, environmental monitoring, pharmacology, and biotechnology.

Author Profile 
Google Scholar 

Education

Prof. Dr. Stella Girousi’s academic journey in chemistry began with a strong passion for understanding the molecular world and the invisible mechanisms shaping biological, environmental, and technological processes. She pursued advanced studies in analytical chemistry, where she cultivated her skills in chemical analysis and innovative laboratory techniques. During her doctoral studies, she focused her research on developing methods of electroanalysis, setting the foundation for her future expertise in voltammetric techniques and biosensor applications. Her early academic pursuits reflect a balance of rigorous scientific training and curiosity-driven research, which later enabled her to contribute to the advancement of electroanalytical chemistry on both theoretical and applied fronts. These formative years established her reputation as a diligent scholar with a drive for innovation in chemical sciences.

Experience

As a long-standing member of the academic staff at the Aristotle University of Thessaloniki, Prof. Girousi has played a pivotal role in advancing the mission of the Analytical Chemistry Laboratory. Her professional path is characterized by dedication to teaching, mentorship, and leadership in research initiatives. She has guided numerous students and young researchers, providing them with strong foundations in analytical chemistry and inspiring them to engage with real-world problems through scientific inquiry. Beyond her teaching contributions, Prof. Girousi has also taken part in significant institutional collaborations and interdisciplinary projects, enhancing the reputation of her department and strengthening links between academia, industry, and international research communities. Her academic career demonstrates a commitment to the dual roles of education and scientific innovation, nurturing the next generation while expanding the frontiers of knowledge.

Research Focus

Prof. Girousi’s research contributions have had a transformative impact on the field of electroanalytical chemistry. Her work revolves around the development of advanced voltammetric techniques for the determination of metals, utilizing mercury, carbon, and mercury/bismuth thin film electrodes. A cornerstone of her research is the creation and optimization of enzymic and electrochemical DNA biosensors, which serve as highly sensitive tools for detecting nucleic acids, proteins, and genotoxic compounds.

Her investigations into drug-DNA interactions and DNA methylation have opened pathways for understanding critical biological processes, with applications in pharmacology, disease diagnostics, and personalized medicine. Furthermore, Prof. Girousi has been at the forefront of integrating nanomaterials and screen-printing technology into biosensor development, ensuring greater sensitivity, miniaturization, and cost-effectiveness. By bridging electrochemistry with biotechnology, her work not only enhances analytical capabilities but also addresses urgent challenges in environmental monitoring, food safety, and healthcare innovation.

Accolades and Recognition

Prof. Girousi’s career has been marked by recognition from both the academic and scientific communities. Her extensive publication record in leading international journals underscores her influence and credibility in the domain of analytical chemistry. She is also associated with scientific platforms such as ORCID, Scopus, and SciProfiles, which further highlight the visibility and global reach of her research contributions. Beyond formal acknowledgments, her recognition is evident in the trust placed in her expertise by peers, students, and collaborators. Her standing as a professor at one of Greece’s most prestigious universities reflects her stature as both an educator and a pioneering researcher.

Impact and Influence

The impact of Prof. Girousi’s work extends well beyond the laboratory. Her contributions to biosensor technology and electroanalytical chemistry have shaped methodologies used in environmental protection, food quality assurance, and medical diagnostics. By introducing new approaches to detecting trace metals and biologically active molecules, she has provided tools that are both practical and highly reliable. These innovations not only benefit scientists and industries but also contribute to improving public health and environmental sustainability. Her mentorship has produced a generation of researchers who carry forward her values of precision, creativity, and interdisciplinary collaboration, thereby multiplying the reach of her influence.

Publications 

Study of interactions between DNA-ethidium bromide (EB) and DNA-acridine orange (AO), in solution, using hanging mercury drop electrode (HMDE).

Author: IC Gherghi, ST Girousi, AN Voulgaropoulos, R Tzimou-Tsitouridou
Journal: Talanta
Year: 2003

pH: principles and measurement.

Author: S Karastogianni, S Girousi, S Sotiropoulos
Journal: Encyclopedia of food and health
Year: 2016

An Electrochemical Sensor Based on Reduced Graphene Oxide, Gold Nanoparticles and Molecular Imprinted Over‐oxidized Polypyrrole for Amoxicillin Determination.

Author: H Essousi, H Barhoumi, S Karastogianni, ST Girousi
Journal: Electroanalysis
Year: 2020

Conclusion

Prof. Dr. Stella Girousi stands as a distinguished figure in the field of analytical chemistry, combining academic excellence, research innovation, and dedicated mentorship. Her pioneering work in voltammetric techniques and biosensor development has significantly advanced applications across environmental science, biotechnology, food safety, and medical diagnostics. Beyond her scientific achievements, she has shaped generations of scholars through her teaching and guidance, leaving a strong educational legacy. With her continued commitment to innovation and collaboration, Prof. Girousi remains a driving force in shaping the future of analytical chemistry, ensuring her influence will resonate in both scientific progress and societal benefit for years to come.