Laleh Kalankesh | Environmental Science | Women Researcher Award

Assist Prof Dr. Laleh Kalankesh | Environmental Science | Women Researcher Award 

Medical science university | Iran

Dr. Laleh R. Kalankesh is an accomplished environmental health engineer and academic whose research integrates environmental engineering, public health, and environmental epidemiology, with a strong emphasis on water quality, pollution control, and human health risk assessment. She is currently an Assistant Professor of Environmental Health Sciences at Gonabad University of Medical Sciences, Iran, where she is actively involved in teaching, mentoring postgraduate students, and leading multidisciplinary research projects addressing critical environmental and health challenges in Iran and comparable arid and semi-arid regions. Dr. Kalankesh earned her PhD in Environmental Health Engineering from Mazandaran University of Medical Sciences, where her doctoral research focused on monitoring disinfection by-products (DBPs), including trihalomethanes (THMs) and haloacetic acids (HAAs), in surface water, groundwater, and drinking water distribution networks. Her work also advanced membrane technology by developing graphene oxide–modified polyamide nanofiltration membranes to enhance the removal of DBPs and total organic carbon (TOC). This research built on her earlier MSc and BSc training in environmental health engineering, with a strong foundation in nanoparticle applications for wastewater treatment and heavy metal removal. Her research portfolio spans water and wastewater treatment, membrane processes, nanomaterials, air pollution, and environmental epidemiology. She has made notable contributions to understanding DBP formation and health risks, desalination using microbial desalination cells, photocatalytic degradation of organic pollutants, and the application of nanoparticles and composites as bactericides and adsorbents. In parallel, her epidemiological studies examine the health impacts of air pollution, meteorological factors, and socio-environmental inequalities, including contributions to large-scale Global Burden of Disease (GBD) studies published in leading journals such as The Lancet Planetary Health and The Lancet Global Health. Dr. Kalankesh has authored 45 peer-reviewed publications, holds an h-index of 21, and is recognized among the world’s top 2% scientists (2025). She has served as principal investigator on numerous nationally funded research projects and is an active peer reviewer for international journals. Her innovative capacity is further reflected in a patented portable device for sterilizing fruits and vegetables. Through her interdisciplinary research and academic leadership, Dr. Kalankesh continues to contribute significantly to advancing environmental health science and evidence-based policy for sustainable development and public health protection.

Citation Metrics (Google Scholar)

9000
8000
7000
6000
5000
4000
3000
2000
1000
500
400
300
200
100
50
0

Citations
8343

Documents
57

h-index
22

Citations

Documents

h-index

View Google Scholar Profile     View Scopus Profile

Featured Publications

Wenjing Zhang | Environmental Science | Research Excellence Award | 14094

Prof Dr. Wenjing Zhang | Environmental Science | Research Excellence Award 

Jilin University | China

Professor Wenjing Zhang is an established scholar in hydrology, groundwater science, and environmental systems engineering, with internationally recognized contributions to subsurface contaminant transport, groundwater pollution risk assessment, and multi-phase, multi-media environmental processes. She received her Ph.D. in Hydrology and Water Resources from Jilin University and completed postdoctoral research at Beijing Normal University, followed by academic advancement to Full Professor at the College of New Energy and Environment, Jilin University. Her research integrates hydrological processes, geochemical interactions, microbiological dynamics, and environmental risk modeling to address complex challenges in groundwater and soil environments under natural and anthropogenic stressors. A central focus of her work is the transport and fate of pathogens, viruses, and colloids in porous media, particularly within the capillary and vadose zones, where coupled physical, chemical, and biological processes govern contaminant migration across groundwater–soil–atmosphere interfaces. Professor Zhang has led multiple nationally funded projects as Principal Investigator, including a National Natural Science Foundation of China General Program and key subprojects under the National Key R&D Program of China. These projects investigate critical mechanisms such as ssRNA virus transport at multiple spatial scales, DNAPL solid–liquid–gas multiphase partitioning, and cross-media interfacial migration and transformation. Her research outcomes have advanced scientific understanding of pathogen mobility, colloid-facilitated transport, and redox-driven contaminant attenuation, while also supporting the development of multidimensional groundwater pollution risk early-warning systems and real-time monitoring technologies. Her scholarly work is widely published in leading international journals, including Science of the Total Environment, Environmental Science & Technology, Journal of Hydrology, Environment International, and Geoscience Frontiers, where she has frequently served as sole first author or corresponding author. These publications are characterized by strong interdisciplinary integration, combining laboratory experiments, field investigations, and process-based modeling to bridge fundamental science with practical environmental management. In addition to academic publications, Professor Zhang has contributed to technology transfer and policy-relevant outcomes through software systems for groundwater monitoring and risk forecasting, which have been applied in contaminated site management and regional groundwater protection. Her research achievements have been recognized through multiple provincial-level Science and Technology Progress Awards and national technology promotion honors. Through sustained innovation, interdisciplinary collaboration, and leadership in major research programs, Professor Wenjing Zhang continues to play a pivotal role in advancing groundwater environmental science and supporting sustainable water resource protection in China and beyond.

Citation Metrics (Google Scholar)

2000
1000
  500
  400
  300
  200
  100
    50
    30
    10
      0

Citations
1296

Documents
86

h-index
23

Citations

Documents

h-index

View Scopus Profile
    View Orcid Profile

Featured Publications

Heng Liu | Environmental and Sustainable Materials | Research Excellence Award

Mr. Heng Liu | Environmental and Sustainable Materials | Research Excellence Award

Qingdao University of Science and Technology | China

Prof. Heng Liu is an accomplished materials scientist and professor at Qingdao University of Science and Technology, widely recognized for his significant contributions to organometallic catalysis and polymer chemistry. He earned his Ph.D. in 2015 from the Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences (CAS), followed by productive postdoctoral research at the Technion – Israel Institute of Technology between 2015 and 2017. Upon returning to China, he served as an associate professor at CIAC before joining Qingdao University of Science and Technology as a full professor in 2020. Throughout his career, Prof. Liu has built an impressive portfolio of research achievements that reflect his scientific rigor, innovation, and leadership in advancing olefin and diene polymerization technologies. His research primarily focuses on the development of high-efficiency organometallic catalysts, the functionalization of polymers, and performance enhancement strategies for synthetic rubber materials—areas that hold major industrial relevance in the rubber, plastic, and advanced materials sectors. Prof. Liu has published 63 high-impact journal articles in prestigious publications such as Advanced Functional Materials, ACS Catalysis, Coordination Chemistry Reviews, Macromolecules, and other leading SCI-indexed platforms. His strong publication record is supported by a robust citation footprint in global scientific databases, reflecting the wide impact and recognition of his work within the research community. He has successfully led and participated in multiple funded research projects, including major grants from the National Natural Science Foundation of China (52573115, 22071236, 21801236), the Shandong Province Natural Science Foundation (ZR2024ME117), and the Taishan Scholar Foundation (202211165), demonstrating his capability to secure competitive funding for frontier research. Beyond academic projects, Prof. Liu has completed six consultancy and industry collaborations, reinforcing the practical applicability of his scientific innovations. He holds 18 patents, underscoring his commitment to translating research outcomes into technological advancements. His editorial contributions include serving on the editorial boards of Frontiers in Chemistry and China Synthetic Rubber Industry, where he supports scholarly communication and peer review in his field. Prof. Liu’s work is strengthened by active collaborations with researchers across institutions and countries, contributing to scientific progress through interdisciplinary engagement. With expertise spanning catalysis, polymer design, and advanced material fabrication, Prof. Liu continues to make substantial contributions to both fundamental science and industrial technology. His achievements, leadership, and innovation position him as a distinguished candidate for the Research Excellence Award.

Profile: Scopus | Orcid

Featured Publications

Polymer Chemistry (2025)

Zhang, H., Zhang, X., Zheng, H., Wang, F., Wei, X., Zhang, X., & Liu, H. (2025). Synthesis of α,ω-end hetero-functionalized polyisoprene via neodymium-mediated coordinative chain transfer polymerization. Polymer Chemistry. https://doi.org/10.1039/D4PY01452A

Journal of Applied Polymer Science (2025 – Nov 05)

Zheng, H., Zhang, H., Zhao, W., Wang, F., Zhang, X., & Liu, H. (2025). Controllable preparation of hydroxyl-terminated liquid polydiene rubber featuring high 1,4-content by neodymium-mediated coordinative chain transfer polymerizations strategy. Journal of Applied Polymer Science. https://doi.org/10.1002/app.57602

Journal of Applied Polymer Science (2025 – Mar 10)

Li, X., Zhang, X., Wang, F., Liu, W., Zhang, X., & Liu, H. (2025). Neodymium-mediated coordinative chain transfer homopolymerization of bio-based myrcene and copolymerization with butadiene and isoprene. Journal of Applied Polymer Science. https://doi.org/10.1002/app.56557

Macromolecules (2025 – Feb 25)

Wang, X., Ma, L., Dong, B., Zhang, C., Zhang, X., & Liu, H. (2025). Axial anagostic interaction in α-diimine nickel catalysts: An ultraefficient occupation strategy in suppressing associative chain transfers to achieve UHMWPEs. Macromolecules, 58(?), pages pending. https://doi.org/10.1021/acs.macromol.4c03244

Molecular Catalysis (2024)

Liu, X., Yang, Q., Zhang, C., Zhang, X., & Liu, H. (2024). 3,4-selective polymerization of isoprene by iron-based system: The key role of borate salts for enhancing catalytic activities and broadening 1,10-phenanthroline ligand scope. Molecular Catalysis, 114082. https://doi.org/10.1016/j.mcat.2024.114082

SSRN Preprint (2024)

Liu, H., Liu, X., Zhang, C., Yang, Q., & Zhang, X. (2024). 3,4-selective polymerization of isoprene by iron-based system: The key role of borate salts for enhancing catalytic activities and broadening 1,10-phenanthroline ligand scope [Preprint]. SSRN. https://doi.org/10.2139/ssrn.4690393

 

Minglu Zhang | Environmental Science | Best Researcher Award

Prof. Dr. Minglu Zhang | Environmental Science | Best Researcher Award

Beijing University of Technology and Business | China

Dr. Minglu Zhang is currently a professor in the Department of Environmental Engineering at Beijing Technology and Business University, having previously served as associate professor (2015–2019) and lecturer (2012–2015) in the same discipline. After completing a postdoctoral appointment in the School of Environment at Tsinghua University (2010–2012) and earlier research experience at the University of California, Irvine (2008–2010), he has built a distinguished career in environmental microbiology and water systems research. His primary research interests encompass microbial ecology and molecular microbiology in water and solid waste systems, with a special focus on antibiotic-resistant bacteria and resistance genes in drinking water systems. Dr. Zhang has led and contributed to several major national research projects. For example, he is the principal investigator on the “Typing and Traceability System for VBNC State Pathogens of Major Digestive Tract at Ports” (2022–2025, National Key R&D Program), as well as on the “Technology and Equipment Development for Monitoring, Early Warning and Purification of Malodorous Gas Emissions under Classified Collection of Domestic Waste” (2020–2024, National Key R&D Program). Earlier, he also led work on the distribution and migration of antibiotic resistance genes at multi-phase interfaces in drinking water distribution systems (2015–2017, National Natural Science Foundation of China). To date, Dr. Zhang has authored or co-authored numerous peer-reviewed scientific publications. According to his ResearchGate profile, his publication count is 79, with more than 1,300 citations. His academic impact is further reflected by his h-index, which is listed as 5 on the SciSpace author profile. Among his representative works are: “Metagenomics analysis of antibiotic resistance genes, bacterial community and virulence factor genes of fouled filters and effluents from household water purifiers in drinking water” (Science of the Total Environment, 2023); “Global transcriptional analysis for molecular responses of Alicyclobacillus acidoterrestris spores in drinking water after low- and medium-pressure UV irradiation” (Journal of Hazardous Materials, 2024); and “Highly efficient degradation of ethanol, acetaldehyde, and ethyl acetate removal by bio-trickling filter reactors” (Process Safety and Environmental Protection, 2024). These works illustrate how he combines high-throughput molecular methods (e.g. metagenomics, transcriptional profiling) with applied engineering systems (e.g. drinking water treatment, gas emission purification) to address critical environmental microbiology challenges. Over the course of his career, Dr. Zhang has established himself as a leading scholar at the intersection of environmental engineering and microbial molecular ecology. His work not only advances fundamental understanding of microbial community dynamics and resistance gene behavior in engineered systems, but also yields practical solutions for water quality protection, public health, and waste management. His contributions are broadly recognized in China’s environmental research community and are increasingly cited in the international literature.

Profiles: Orcid

Featured Publications

Zhang, M., et al. (2025). Adsorption and desorption characteristics of nano-metal-modified zeolite for removal of oxygenated volatile organic compounds. Coatings, 15(10), 1206. https://doi.org/10.3390/coatings15101206

Jiang, J., Zhang, Y., Cui, R., Ren, L., Zhang, M., & Wang, Y. (2023). Effects of two different proportions of microbial formulations on microbial communities in kitchen waste composting. Microorganisms, 11(10), 2605. https://doi.org/10.3390/microorganisms11102605

Wang, Y., Cui, R., Jiang, H., Bai, M., Zhang, M., & Ren, L. (2022). Removal of hydrogen sulfide and ammonia using a biotrickling filter packed with modified composite filler. Processes, 10(10), 2016. https://doi.org/10.3390/pr10102016

Xu, S., Zhang, L., Lin, K., Bai, M., Wang, Y., Xu, M., Zhang, M., Zhang, C., Shi, Y., & Zhou, H. (2021). Effects of light and water disturbance on the growth of Microcystis aeruginosa and the release of algal toxins. Water Environment Research, 93, 2958–2970. https://doi.org/10.1002/wer.1644

Lanhui Zhang | Earth and Planetary Sciences | Best Researcher Award | 13425

Prof Dr Lanhui Zhang | Earth and Planetary Sciences | Best Researcher Award

Prof Dr Lanhui Zhang,Lanzhou university,China

Prof. Lanhui Zhang is nominated for the Best Researcher Award in recognition of her exceptional contributions to environmental science and hydrology. Her pioneering work in land surface-atmosphere interactions and the integration of AI into hydrological modeling has significantly advanced the field. With over 40 publications, leadership in national research projects, and recognized international service, Prof. Zhang exemplifies innovation, impact, and academic excellence.

 Profile

Scopus

🎓 Early Academic Pursuits

Prof. Lanhui Zhang embarked on her academic journey with a deep curiosity about atmospheric sciences and their interactions with the Earth’s surface. She pursued her higher education at Lanzhou University, one of China’s leading institutions in environmental and earth sciences. In 2011, she earned her Ph.D. in Meteorology, laying the foundation for her lifelong commitment to hydrological research and land-atmosphere dynamics.

👩‍🔬 Professional Endeavors

Prof. Zhang has risen through the academic ranks to become a Professor at the Key Laboratory of West China’s Environmental System (Ministry of Education), under the College of Earth and Environmental Sciences, Lanzhou University. She was promoted to this position in 2024, after years of research excellence and academic leadership.

Her professional career is defined by active leadership in nationally funded research projects, with three projects under her leadership and contributions to three others supported by the National Natural Science Foundation of China (NSFC). These projects tackle critical issues such as two-dimensional soil water movement, land use change, and the assimilation of remote sensing data into hydrological models—areas crucial for the environmental management of China’s vulnerable mountain ecosystems.

🧠 Contributions and Research Focus

Prof. Zhang’s primary research interests include land surface-atmosphere interactions, hydrological modeling, and the integration of artificial intelligence (AI) in environmental systems. Her work represents a forward-thinking fusion of physical science with machine learning, aimed at improving the precision and adaptability of environmental simulations.

🏅 Accolades and Recognition

Prof. Zhang’s research excellence has earned her national and international recognition. From 2016 to 2024, she served as the Executive Director of the Steering Committee for the IGU Water Sustainability Commission, showcasing her leadership on a global platform concerned with water sustainability and climate resilience.

🌍 Impact and Influence

Prof. Zhang’s research extends beyond academia. By applying her models to real-world challenges in water management, especially in China’s ecologically sensitive mountain regions, she has contributed to sustainable agricultural and water resource practices. Her integration of AI in hydrological modeling has sparked interest among younger researchers and provided a framework for interdisciplinary collaborations, bridging environmental science, computer modeling, and engineering. Her hybrid modeling techniques are being adapted and cited in multiple environmental modeling platforms, influencing both research direction and educational curricula across institutions.

🔮 Legacy and Future Contributions

Looking forward, Prof. Zhang is committed to expanding the frontier of intelligent environmental modeling. She envisions developing adaptive, AI-driven hydrological models that respond in real-time to environmental changes—tools that will be critical in an era of accelerating climate variability. She also plans to mentor young scientists, expand international collaborations, and contribute to national policy through science-based guidance on water and land sustainability. Prof. Zhang’s work stands as a legacy of scientific innovation, real-world relevance, and educational impact. Her ongoing contributions promise to shape the future of environmental modeling and water resource management both in China and internationally.

Publications Top Notes

The effect of heat treatment on the electrochemical properties of additive manufactured TC4 titanium alloy

Author: S., Che, Shuanghang, Y., Zhang, Yifei, Q., Yuan, Quan, L., Kong, Lu, J., Li, Jianzhong

Journal: International Journal of Electrochemical Science This link is disabled

Year: 2025

Thermodynamics study for Y2O3-Al2O3-SiO2 system: Emphasis on the equilibrium phase relationship at 1400℃ and 1600℃

Author: S., Li, Sheng, J., Shi, Junjie, D., Li, Dong, Y., Qiu, Yuchao, J., Li, Jianzhong

Journal: Journal of Alloys and CompoundsThis link is disabled

Year: 2025

Effect of 5wt% Fe3O4 addition on the phase equilibria of the CaO-SiO2-TiO2 system at 1400°C in air

Author: J., Shi, Junjie, C., Jiang, Chenglong, Y., Cao, Yifei, M., Yao, Maoxi, J., Li, Jianzhong

Journal: International Journal of Minerals, Metallurgy and Materials This link is disabled

Year: 2025

Ying Zhang | Environmental Science | Best Researcher Award

Assoc. Prof. Dr. Ying Zhang | Environmental Science | Best Researcher Award 

Assoc. Prof. Dr. Ying Zhang, Aerospace Information Research Institute, Chinese Academy of Sciences, China

Assoc. Prof. Dr. Ying Zhang is a renowned expert in atmospheric environment remote sensing at the Aerospace Information Research Institute, Chinese Academy of Sciences, China. She has published over 90 scientific papers and holds multiple patents in the field. Her pioneering work in particulate matter remote sensing and atmospheric composition inversion has been adopted by key institutions, including the China Meteorological Administration. Dr. Zhang has led numerous national and international research projects, received prestigious awards such as the Aerosol Young Scientist Award and China Patent Award, and collaborates globally with top research institutes in advancing environmental and atmospheric monitoring technologies.

Profile

Orcid

🎓 Early Academic Pursuits

Dr. Ying Zhang’s journey into the world of science began with a deep interest in environmental and atmospheric phenomena. Her academic foundation was solidified at the prestigious Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences (CAS), where she earned her Ph.D. in Remote Sensing. Her doctoral research focused on atmospheric environment remote sensing, laying the groundwork for a career dedicated to environmental monitoring through satellite data and advanced algorithms. Her early academic work reflected a blend of precision, curiosity, and a strong commitment to addressing environmental challenges through scientific innovation.

👩‍💼 Professional Endeavors

Currently serving as an Associate Professor at the Aerospace Information Research Institute, CAS, Dr. Zhang plays a vital role in advancing China’s capabilities in satellite-based environmental monitoring. Her professional journey includes participation in eight major national and international research projects, where she has worked extensively on atmospheric environmental remote sensing, air quality monitoring, and climate change analysis. In addition to her academic roles, she has provided critical consultancy as the Principal Investigator (PI) for three industry-linked projects in the meteorology and environmental protection sectors, bridging the gap between scientific research and practical application.

🔬 Contributions and Research Focus

Dr. Zhang is a pioneer in the field of remote sensing for atmospheric monitoring. Her research introduced the Multi-parameter Particulate Matter Remote Sensing (PMRS) approach, a breakthrough in differentiating anthropogenic and natural sources of air pollution using satellite data. This methodology has since been operationalized by the China Meteorological Administration for real-time haze monitoring via the FY-4 satellite. Furthermore, she developed a remote sensing inversion method for determining the chemical composition of atmospheric particulates—now utilized by over ten institutions through the SONET (Sun-Sky Radiometer Observation Network).

Her academic contributions include the authorship of over 90 scientific papers, 70 of which are indexed in the Web of Science Core Collection, earning her over 1,654 citations. She has also co-authored two monographs, one in English and another in Chinese, showcasing her ability to communicate complex scientific ideas to both domestic and international audiences.

🏆 Accolades and Recognition

Dr. Zhang’s exceptional contributions have earned her numerous prestigious awards that underscore her scientific impact. These include:

  • 🥇 Aerosol Young Scientist Award

  • 🧪 Beijing Natural Science Award

  • 🌱 Environmental Protection Science and Technology Award

  • 💡 China Patent Award for Excellence

These accolades not only highlight her technical excellence but also recognize her contributions to environmental sustainability and public health through improved monitoring systems and methodologies.

🌍 Impact and Influence

Dr. Zhang’s research has had a significant real-world impact. By advancing remote sensing techniques, her work has strengthened China’s environmental monitoring infrastructure, particularly in tracking air pollution and climate change. Her PMRS method is a cornerstone in national haze monitoring operations, while her composition inversion techniques have empowered research institutions and meteorological agencies to better understand and respond to pollution events.

In addition to her scientific output, she has actively shaped the research community through editorial roles, including guest editor positions at Remote Sensing and Atmosphere, and as an editorial board member of China Environmental Monitoring. Her collaborative efforts span across leading international institutions such as the Royal Netherlands Meteorological Institute, Japan Agency for Marine-Earth Science and Technology, University of Lille, and the University of Wisconsin-Madison—promoting global dialogue and cooperation in environmental science.

🧬 Legacy and Future Contributions

Dr. Zhang’s legacy is one of bridging theory and application, with her innovations in remote sensing poised to continue benefiting both scientific communities and policy-making bodies. Her leadership and contributions serve as an inspiration for young scientists, particularly women in STEM, and her methodologies are likely to influence future developments in artificial intelligence-driven remote sensing, big data atmospheric modeling, and international climate change monitoring frameworks.

Looking ahead, Dr. Zhang is expected to further explore multi-source data integration, enhancing the precision and scope of environmental monitoring systems. With 10 invention patents already published and 4 more under process, her work continues to shape the evolving landscape of atmospheric sciences and remote sensing technology.

Publication Top Notes

ContributorsZhuolin Yang; Ying Zhang; Yisong Xie; Hua Xu; Chaoyu Yan; Tong Hu; Zhengqiang Li
Journal: Environment International
Year: 2025
Contributors: Zhe Ji; Zhengqiang Li; Ying Zhang; Yan Ma; Zheng Shi; Xiaoxi Yan; Yisong Xie; Yang Zheng; Zhenting Chen
Journal: Aerosol Science and Engineering
Year: 2024