Laleh Kalankesh | Environmental Science | Women Researcher Award

Assist Prof Dr. Laleh Kalankesh | Environmental Science | Women Researcher Award 

Medical science university | Iran

Dr. Laleh R. Kalankesh is an accomplished environmental health engineer and academic whose research integrates environmental engineering, public health, and environmental epidemiology, with a strong emphasis on water quality, pollution control, and human health risk assessment. She is currently an Assistant Professor of Environmental Health Sciences at Gonabad University of Medical Sciences, Iran, where she is actively involved in teaching, mentoring postgraduate students, and leading multidisciplinary research projects addressing critical environmental and health challenges in Iran and comparable arid and semi-arid regions. Dr. Kalankesh earned her PhD in Environmental Health Engineering from Mazandaran University of Medical Sciences, where her doctoral research focused on monitoring disinfection by-products (DBPs), including trihalomethanes (THMs) and haloacetic acids (HAAs), in surface water, groundwater, and drinking water distribution networks. Her work also advanced membrane technology by developing graphene oxide–modified polyamide nanofiltration membranes to enhance the removal of DBPs and total organic carbon (TOC). This research built on her earlier MSc and BSc training in environmental health engineering, with a strong foundation in nanoparticle applications for wastewater treatment and heavy metal removal. Her research portfolio spans water and wastewater treatment, membrane processes, nanomaterials, air pollution, and environmental epidemiology. She has made notable contributions to understanding DBP formation and health risks, desalination using microbial desalination cells, photocatalytic degradation of organic pollutants, and the application of nanoparticles and composites as bactericides and adsorbents. In parallel, her epidemiological studies examine the health impacts of air pollution, meteorological factors, and socio-environmental inequalities, including contributions to large-scale Global Burden of Disease (GBD) studies published in leading journals such as The Lancet Planetary Health and The Lancet Global Health. Dr. Kalankesh has authored 45 peer-reviewed publications, holds an h-index of 21, and is recognized among the world’s top 2% scientists (2025). She has served as principal investigator on numerous nationally funded research projects and is an active peer reviewer for international journals. Her innovative capacity is further reflected in a patented portable device for sterilizing fruits and vegetables. Through her interdisciplinary research and academic leadership, Dr. Kalankesh continues to contribute significantly to advancing environmental health science and evidence-based policy for sustainable development and public health protection.

Citation Metrics (Google Scholar)

9000
8000
7000
6000
5000
4000
3000
2000
1000
500
400
300
200
100
50
0

Citations
8343

Documents
57

h-index
22

Citations

Documents

h-index

View Google Scholar Profile     View Scopus Profile

Featured Publications

Wenjing Zhang | Environmental Science | Research Excellence Award | 14094

Prof Dr. Wenjing Zhang | Environmental Science | Research Excellence Award 

Jilin University | China

Professor Wenjing Zhang is an established scholar in hydrology, groundwater science, and environmental systems engineering, with internationally recognized contributions to subsurface contaminant transport, groundwater pollution risk assessment, and multi-phase, multi-media environmental processes. She received her Ph.D. in Hydrology and Water Resources from Jilin University and completed postdoctoral research at Beijing Normal University, followed by academic advancement to Full Professor at the College of New Energy and Environment, Jilin University. Her research integrates hydrological processes, geochemical interactions, microbiological dynamics, and environmental risk modeling to address complex challenges in groundwater and soil environments under natural and anthropogenic stressors. A central focus of her work is the transport and fate of pathogens, viruses, and colloids in porous media, particularly within the capillary and vadose zones, where coupled physical, chemical, and biological processes govern contaminant migration across groundwater–soil–atmosphere interfaces. Professor Zhang has led multiple nationally funded projects as Principal Investigator, including a National Natural Science Foundation of China General Program and key subprojects under the National Key R&D Program of China. These projects investigate critical mechanisms such as ssRNA virus transport at multiple spatial scales, DNAPL solid–liquid–gas multiphase partitioning, and cross-media interfacial migration and transformation. Her research outcomes have advanced scientific understanding of pathogen mobility, colloid-facilitated transport, and redox-driven contaminant attenuation, while also supporting the development of multidimensional groundwater pollution risk early-warning systems and real-time monitoring technologies. Her scholarly work is widely published in leading international journals, including Science of the Total Environment, Environmental Science & Technology, Journal of Hydrology, Environment International, and Geoscience Frontiers, where she has frequently served as sole first author or corresponding author. These publications are characterized by strong interdisciplinary integration, combining laboratory experiments, field investigations, and process-based modeling to bridge fundamental science with practical environmental management. In addition to academic publications, Professor Zhang has contributed to technology transfer and policy-relevant outcomes through software systems for groundwater monitoring and risk forecasting, which have been applied in contaminated site management and regional groundwater protection. Her research achievements have been recognized through multiple provincial-level Science and Technology Progress Awards and national technology promotion honors. Through sustained innovation, interdisciplinary collaboration, and leadership in major research programs, Professor Wenjing Zhang continues to play a pivotal role in advancing groundwater environmental science and supporting sustainable water resource protection in China and beyond.

Citation Metrics (Google Scholar)

2000
1000
  500
  400
  300
  200
  100
    50
    30
    10
      0

Citations
1296

Documents
86

h-index
23

Citations

Documents

h-index

View Scopus Profile
    View Orcid Profile

Featured Publications

Dongdong Wang | Environmental Science | Research Excellence Award

Prof Dr. Dongdong Wang | Environmental Science | Research Excellence Award

University of Science and Technology of China | China

Prof. Dr. Dongdong Wang is a distinguished materials scientist and interdisciplinary researcher whose work bridges chemistry, nanotechnology, biology, and medicine, with a strong focus on nanozyme engineering and metal–organic framework (MOF)–derived functional materials for biomedical applications. He received his Bachelor of Science degree from Lanzhou University and earned his Ph.D. in 2018 from the University of Science and Technology of China (USTC). Following his doctoral training, he conducted postdoctoral research at Nanyang Technological University from 2018 to 2022, where he further expanded his expertise in advanced nanomaterials and catalytic systems. In June 2022, Prof. Wang joined USTC as a Professor and Principal Investigator, establishing an independent and rapidly growing research program. Prof. Wang has authored more than 80 high-impact research articles published in internationally leading journals such as Accounts of Chemical Research, Nature Communications, Angewandte Chemie, Advanced Materials, Chem, ACS Nano, and Advanced Science. His scholarly contributions demonstrate both depth and breadth, ranging from fundamental mechanistic studies to application-oriented innovations. His research is supported by competitive funding, including grants from the National Natural Science Foundation of China and the Anhui Provincial Natural Science Foundation, reflecting strong national recognition of his scientific leadership. In 2025, he was selected as a JMCB Emerging Investigators, further underscoring his rising international profile. The core of Prof. Wang’s research lies in the rational design and synthesis of porous nanozymes, single-atom nanozymes, and MOF-based hybrid materials. He systematically investigates their enzymatic catalytic mechanisms and explores their applications in tumor imaging, diagnosis, therapy, antibacterial treatment, and immunomodulation. A defining feature of his work is the integration of reactive oxygen species (ROS)–based catalytic therapy with modulation of the tumor microenvironment, providing innovative strategies for precision theranostics. Additionally, he explores the use of microorganisms and microbially synthesized nanomaterials in catalysis and tumor immunotherapy, opening new frontiers at the interface of biology and materials science. Beyond research outputs, Prof. Wang plays an active role in the scientific community as a guest editor for leading journals including Molecules, Materials, and Frontiers in Chemistry, and serves as an invited independent reviewer for top-tier journals such as Nature Communications, Journal of the American Chemical Society, ACS Nano, and Biomaterials. His achievements have been recognized through multiple prestigious honors, including the BaoGang Education Scholarship and the National Graduate Scholarship. Overall, Prof. Dongdong Wang’s research profile reflects originality, interdisciplinary impact, and sustained excellence, making him a strong candidate for the Research Excellence Award.

Citation Metrics (Scopus)

7000
6000
5000
4000
3000
2000
1000
  500
  400
  300
  200
  100
      0

Citations
6711

Documents
95

h-index
41

Citations

Documents

h-index

View Scopus Profile
      View Orcid Profile

Featured Publications


Elucidating the Critical Role of Water in Selective Hydrogenation of N-heterocycles on a Cobalt Catalyst

– Angewandte Chemie International EditionThis link is disabled., 2025

Heer Wang | Environmental and Sustainable Materials | Research Excellence Award

Dr. Heer Wang | Environmental and Sustainable Materials | Research Excellence Award 

Kunming University of Science and Technology | China

Dr. Heer Wang is an emerging scholar in applied economics whose research lies at the intersection of industrial transformation, climate change, labor mobility, and sustainable economic development. His work explores how evolving economic structures and environmental shocks shape household behavior, productivity, and long-term growth pathways, particularly within developing and transitional economies. By integrating rigorous microeconometric evaluation methods with rich empirical data, he contributes meaningful insights into how societies adapt to climate risks and structural shifts. A major strand of his research investigates the socioeconomic consequences of climate variability, especially extreme rainfall and its implications for rural livelihoods. His publications in leading journals such as Science of The Total Environment and Applied Economic Perspectives and Policy highlight how climate shocks influence labor mobility, household vulnerability, agricultural productivity, and consumption smoothing. His studies provide evidence-based perspectives that deepen the understanding of how rural communities manage risk, adjust labor allocation, and navigate long-term adaptation strategies under environmental uncertainty. Another important area of his work focuses on industrial structure upgrading and technological capability. Through theoretical and empirical analyses published in the Asian Journal of Technology Innovation, his research examines the depth and sophistication of structural transformation, revealing how technological capacity and sectoral linkages drive high-quality economic development. His work contributes to policy discussions on how emerging economies can enhance industrial competitiveness while maintaining sustainable growth. In addition to published work, he has developed several working papers addressing market integration, climate-induced behavioral responses, and the dynamics of agricultural adaptation. These studies reflect a consistent research theme: understanding how economic agents respond to shocks and incentives within rapidly evolving socioeconomic environments. His research portfolio is reinforced by participation in multiple interdisciplinary and national research projects funded by major institutions. These projects span topics such as digital economy development, fertility policy evaluation, labor mobility under technological disruption, climate risk prediction using artificial intelligence, and the economic implications of population aging. His role across these initiatives demonstrates strong capabilities in empirical modeling, policy analysis, and data-driven decision support. He brings expertise in microeconometrics, policy evaluation techniques, and quantitative analysis using software platforms such as Stata, R, and SPSS. His work contributes directly to academic knowledge, policymaking, and practical interventions aimed at improving resilience, enhancing productivity, and supporting sustainable economic progress. Overall, his research advances critical conversations on how economies can navigate structural change while adapting to environmental and demographic challenges.

Citation Metrics (Google Scholar)

100
   80
   60
   50
   40
   30
   20
   10
     5
     0

Citations
31

Documents
3

h-index
2

Citations

Documents

h-index


View Google Scholar Profile

Featured Publications

Shimelash Molla Kassaye | Environmental Science | Editorial Board Member

Dr. Shimelash Molla Kassaye | Environmental Science | Editorial Board Member

Mattu University | Ethiopia

Dr. Shimelash Molla Kassaye is a highly dedicated scholar and researcher specializing in Hydrology and Water Resources Management, with an extensive academic background and a strong record of scientific contributions in the field of environmental and water sciences. He currently serves as an Assistant Professor at Mattu University, Ethiopia, where he continues to advance research and teaching in hydrology, climate change, and watershed management. His professional journey reflects consistent excellence and commitment to solving pressing environmental and water-related challenges affecting the African continent. Dr. Kassaye earned his Ph.D. in Water Management (Hydrology and Water Resources Management) from the African Centre of Excellence in Water Management (ACEWM) at Addis Ababa University in 2024. His doctoral research, titled “Evaluating the Hydrological Dynamics under Land Use/Cover and Climate Change in the Baro River Basin, Ethiopia,” focused on understanding the complex interactions between climate variability, land use change, and hydrological responses in one of Ethiopia’s key river basins. His research offers vital insights into sustainable water resource management and policy planning under changing climatic conditions. Prior to his Ph.D., he obtained an M.Sc. in Hydraulic Engineering from Jimma University in 2017 with an outstanding CGPA of 3.88/4.00 and a B.Sc. in Hydraulic and Water Resources Engineering from Arbaminch University in 2011. His professional experience spans over a decade of teaching, research, and academic service. Before assuming his current position, Dr. Kassaye worked as a Researcher and Lecturer at Mattu University (2014–2021) and as a Graduate Assistant at Arbaminch University (2012–2014). Through these roles, he has contributed significantly to the training of young engineers and scientists, supervising research projects, and integrating innovative technologies into water resource education and management practices. Dr. Kassaye’s research expertise covers a broad range of topics, including hydrologic modeling, climate change and variability, drought monitoring and prediction, integrated watershed management, natural resource management, and hydrometeorological risk assessment. His multidisciplinary approach, combining remote sensing, geospatial analysis, and hydrological modeling, enables comprehensive assessments of environmental systems under stress from both natural and anthropogenic factors. He has published multiple peer-reviewed scientific papers in high-impact international journals such as Water, Environmental Earth Sciences, Environmental Systems Research, and Earth. His publications have explored critical themes such as the sensitivity of meteorological dynamics to catchment variability, the integrated impact of land use and topography on hydrological extremes, and the quantification of climate change effects on streamflow dynamics. His academic excellence, combined with practical expertise and a strong publication record, positions him as a leading early-career researcher contributing to Ethiopia’s and Africa’s sustainable water resource management efforts. His dedication to advancing hydrological science underscores his commitment to building climate resilience and fostering sustainable development in vulnerable regions.

Profiles: Orcid | Google Scholar

Featured Publications

Kassaye, S. M., Tadesse, T., Tegegne, G., & Hordofa, A. T. (2024). Quantifying the climate change impacts on the magnitude and timing of hydrological extremes in the Baro River Basin, Ethiopia. Environmental Systems Research, 13(1), 1–15.

Belay, H., Melesse, A. M., Tegegne, G., & Kassaye, S. M. (2025). Flood inundation mapping using the Google Earth Engine and HEC-RAS under land use/land cover and climate changes in the Gumara Watershed, Upper Blue Nile Basin, Ethiopia. Remote Sensing, 17(7), 1283.

Malede, D. A., Elumalai, V., Andualem, T. G., Mekonnen, Y. G., Yibeltal, M., Kassaye, S. M., & others. (2025). Understanding flood and drought extremes under a changing climate in the Blue Nile Basin: A review. Environmental and Sustainability Indicators, 100638.

Kassaye, S. M., Tadesse, T., & Tegegne, G. (2024). Quantifying the climate change impacts on the magnitude and timing of hydrological extremes in the Baro River Basin, Ethiopia. Environmental Systems Research, 13(2).

Kassaye, S. M., Tadesse, T., Tegegne, G., Hordofa, A. T., & Malede, D. A. (2024). Relative and combined impacts of climate and land use/cover change for the streamflow variability in the Baro River Basin (BRB). Earth, 5(2), 149–168.

Kassaye, S. M., Tadesse, T., Tegegne, G., & Tadesse, K. E. (2022). The sensitivity of meteorological dynamics to the variability in catchment characteristics. Water, 14(22), 3776.

Kassaye, S. M., Tadesse, T., Tegegne, G., & Hordofa, A. T. (2024). Integrated impact of land use/cover and topography on hydrological extremes in the Baro River Basin. Environmental Earth Sciences, 83(2), 49.

Kassaye, S. M., Ebissa, T. N., Gutema, B. G., & Gurmesa, G. T. (2020). Site selection and design of mini hydropower plant for rural electrification in Keber River. American Journal of Electrical Power and Energy Systems, 9(5), 82–96.

Ebissa, T. N., Kassaye, S. M., & Malede, D. A. (2024). Hydrological response to climate change in Baro Basin, Ethiopia, using representative concentration pathway scenarios. Environmental Systems Research, 13(1), 42.

Waheed, A., Kousar, S., Khan, M. I., & Fischer, T. B. (2025). Environmental and Sustainability Indicators. Environmental and Sustainability Indicators.

Linzhe Wang | Environmental Science | Best Researcher Award

Mr. Linzhe Wang | Environmental Science | Best Researcher Award

Postgraduate at Beijing Information Science & Technology University, China.

Linzhe Wang is a dedicated researcher currently pursuing a master’s degree in electronic information engineering at Beijing Information Science & Technology University. His research interests primarily focus on developing paper-based microfluidic chips for water quality detection and microsensors for detecting heavy metals in water. Linzhe possesses a diverse set of research skills, including experimental design, data analysis, instrumentation, literature review, problem-solving, and collaboration. These skills enable him to conduct rigorous scientific investigations, interpret complex datasets, and contribute meaningfully to advancements in his field. Linzhe’s commitment to addressing critical environmental challenges underscores his potential to make significant contributions to the field of water quality monitoring and management.

Professional Profiles:

Education:

Linzhe Wang completed his bachelor’s degree in automation from Henan University, Kaifeng, Henan, China. Currently, Linzhe is pursuing a master’s degree in electronic information engineering at Beijing Information Science & Technology University, Beijing, China. His academic journey showcases a strong foundation in engineering, particularly in the fields of automation and electronic information engineering.

Research Interest

Linzhe Wang’s research interests encompass two key areas: paper-based microfluidic chips for water quality detection and microsensors for detecting heavy metals in water. In the realm of paper-based microfluidic chips, Linzhe is engaged in the development of innovative platforms aimed at accurately assessing water quality parameters. This pursuit likely involves exploring novel fabrication techniques and integrating advanced sensing technologies into paper-based systems. Additionally, Linzhe is committed to advancing the field of microsensor technology, particularly in the realm of heavy metal detection in water. His research involves designing and optimizing sensitive and selective sensor platforms capable of detecting specific heavy metal contaminants, such as cadmium, lead, and mercury. Linzhe’s work underscores his dedication to addressing critical environmental challenges and advancing the field of water quality monitoring and management.

Research Skills

Linzhe Wang’s research skills are multifaceted and tailored to his field of study. He excels in experimental design, adept at crafting controlled experiments and protocols to ensure reliable outcomes. With a keen grasp of statistical methods and data analysis tools, Linzhe interprets complex datasets with precision, extracting meaningful insights to drive his research forward. Linzhe is well-versed in instrumentation, confidently operating an array of laboratory equipment crucial for his experiments. His meticulous literature reviews contextualize his work within existing scholarship, guiding the trajectory of his research endeavors. Linzhe’s problem-solving prowess enables him to navigate challenges seamlessly, refining methodologies and optimizing protocols. Additionally, his collaborative spirit fosters synergistic teamwork, enhancing innovation and propelling scientific progress. Linzhe Wang’s comprehensive research skills empower him to undertake rigorous investigations, contribute significant findings, and advance knowledge in his field.

Publications

  1. An Electrochemical Sensor Based on Three-Dimensional Porous Reduced Graphene and Ion Imprinted Polymer for Trace Cadmium Determination in Water
    • Authors: Wang, L., Hu, J., Wei, W., Gao, G., Qin, L.
    • Year: 2023
    • Publication: Sensors, 23(23), 9561
  2. Ion Imprinted Polymers Integrated into a Multi-Functional Microfluidic Paper-Based Analytical Device for Trace Cadmium Detection in Water
    • Authors: Hu, J., Wang, L., Song, Y., Wu, J., Mulchandani, A.
    • Year: 2023
    • Publication: Analytical Methods, 16(2), pp. 179–188