Richard Beach | Ecology | Best Researcher Award | 13648

Prof. Richard Beach | Ecology | Best Researcher Award 

University of Minnesota | United States

Professor Richard W. Beach is an internationally respected scholar and Professor Emeritus of English Education at the College of Education and Human Development, University of Minnesota. With a distinguished academic career spanning over five decades, Dr. Beach has been a pioneering voice in the fields of literacy education, literature pedagogy, digital media in education, and adolescent identity in English classrooms. He holds a B.A. in English from Wesleyan University, an M.A. in Education from Trinity College, and a Ph.D. in Education from the University of Illinois at Urbana-Champaign. Professor Beach is the author, co-author, or editor of 30 major academic books, most published by leading educational publishers such as Routledge, Teachers College Press, and the National Council of Teachers of English (NCTE). His body of work reflects a deep and sustained commitment to rethinking how literature, writing, media, and critical inquiry are taught in secondary and post-secondary classrooms. His books such as Teaching Literature to Adolescents, Teaching Climate Change to Adolescents, and Teaching to Exceed the English Language Arts Standards have become foundational texts in English teacher education and are widely used in teacher training programs internationally. His work has garnered broad academic recognition, with an estimated 4,000+ citations and an h-index of 30+, reflecting both the influence and reach of his scholarship across educational research domains. He has collaborated with prominent scholars and co-edited multidisciplinary volumes like Multidisciplinary Perspectives on Literacy Research, and continues to shape the discourse around literacy instruction, digital literacies, and critical pedagogy in the ELA classroom. Dr. Beach’s research is characterized by its responsiveness to changing cultural, technological, and ecological landscapes. He has advocated for student-centered approaches to learning that honor learners’ identities, social worlds, and real-world concerns. His recent work on teaching climate change and fostering critical digital literacies demonstrates a progressive and action-oriented vision for education.

Profiles:  Scopus | Google Scholar

Featured Publications

Beach, R. (1993). A teacher’s introduction to reader-response theories. Urbana, IL: National Council of Teachers of English.

Taylor, B. M., & Beach, R. W. (1984). The effects of text structure instruction on middle-grade students’ comprehension and production of expository text. Reading Research Quarterly, 19(2), 134–146.

Purves, A. C., & Beach, R. (1972). Literature and the reader: Research in response to literature, reading interests, and the teaching of literature. Urbana, IL: National Council of Teachers of English.

Newell, G. E., Beach, R., Smith, J., & VanDerHeide, J. (2011). Teaching and learning argumentative reading and writing: A review of research. Reading Research Quarterly, 46(3), 273–304.

Appleman, D., Beach, R., Simon, R., & Fecho, B. (2016). Teaching literature to adolescents (3rd ed.). New York, NY: Routledge.

Galda, L., & Beach, R. (2001). Response to literature as a cultural activity. Reading Research Quarterly, 36(1), 64–73.

Beach, R. (1976). Self-evaluation strategies of extensive revisers and nonrevisers. College Composition and Communication, 27(2), 160–164.

 

Stella Girousi | Environmental Science | Women Researcher Award

Prof Dr. Stella Girousi | Environmental Science | Women Researcher Award 

Prof Dr. Stella Girousi | Aristotle University of Thessaloniki | Greece

Prof. Dr. Stella Girousi is a Professor of Analytical Chemistry at the Aristotle University of Thessaloniki, Greece, where she has been a faculty member since 1999. She earned her PhD in Analytical Chemistry in 1996 and specializes in developing innovative electroanalytical methods, particularly voltammetric techniques and biosensors. Her research focuses on environmental, biological, and food analysis, including the detection of nucleic acids, proteins, and genotoxic compounds, as well as drug-DNA interactions and DNA methylation using advanced nanomaterials and screen-printing technologies. Prof. Girousi has published extensively in high-impact journals, significantly advancing the fields of analytical chemistry, environmental monitoring, pharmacology, and biotechnology.

Author Profile 
Google Scholar 

Education

Prof. Dr. Stella Girousi’s academic journey in chemistry began with a strong passion for understanding the molecular world and the invisible mechanisms shaping biological, environmental, and technological processes. She pursued advanced studies in analytical chemistry, where she cultivated her skills in chemical analysis and innovative laboratory techniques. During her doctoral studies, she focused her research on developing methods of electroanalysis, setting the foundation for her future expertise in voltammetric techniques and biosensor applications. Her early academic pursuits reflect a balance of rigorous scientific training and curiosity-driven research, which later enabled her to contribute to the advancement of electroanalytical chemistry on both theoretical and applied fronts. These formative years established her reputation as a diligent scholar with a drive for innovation in chemical sciences.

Experience

As a long-standing member of the academic staff at the Aristotle University of Thessaloniki, Prof. Girousi has played a pivotal role in advancing the mission of the Analytical Chemistry Laboratory. Her professional path is characterized by dedication to teaching, mentorship, and leadership in research initiatives. She has guided numerous students and young researchers, providing them with strong foundations in analytical chemistry and inspiring them to engage with real-world problems through scientific inquiry. Beyond her teaching contributions, Prof. Girousi has also taken part in significant institutional collaborations and interdisciplinary projects, enhancing the reputation of her department and strengthening links between academia, industry, and international research communities. Her academic career demonstrates a commitment to the dual roles of education and scientific innovation, nurturing the next generation while expanding the frontiers of knowledge.

Research Focus

Prof. Girousi’s research contributions have had a transformative impact on the field of electroanalytical chemistry. Her work revolves around the development of advanced voltammetric techniques for the determination of metals, utilizing mercury, carbon, and mercury/bismuth thin film electrodes. A cornerstone of her research is the creation and optimization of enzymic and electrochemical DNA biosensors, which serve as highly sensitive tools for detecting nucleic acids, proteins, and genotoxic compounds.

Her investigations into drug-DNA interactions and DNA methylation have opened pathways for understanding critical biological processes, with applications in pharmacology, disease diagnostics, and personalized medicine. Furthermore, Prof. Girousi has been at the forefront of integrating nanomaterials and screen-printing technology into biosensor development, ensuring greater sensitivity, miniaturization, and cost-effectiveness. By bridging electrochemistry with biotechnology, her work not only enhances analytical capabilities but also addresses urgent challenges in environmental monitoring, food safety, and healthcare innovation.

Accolades and Recognition

Prof. Girousi’s career has been marked by recognition from both the academic and scientific communities. Her extensive publication record in leading international journals underscores her influence and credibility in the domain of analytical chemistry. She is also associated with scientific platforms such as ORCID, Scopus, and SciProfiles, which further highlight the visibility and global reach of her research contributions. Beyond formal acknowledgments, her recognition is evident in the trust placed in her expertise by peers, students, and collaborators. Her standing as a professor at one of Greece’s most prestigious universities reflects her stature as both an educator and a pioneering researcher.

Impact and Influence

The impact of Prof. Girousi’s work extends well beyond the laboratory. Her contributions to biosensor technology and electroanalytical chemistry have shaped methodologies used in environmental protection, food quality assurance, and medical diagnostics. By introducing new approaches to detecting trace metals and biologically active molecules, she has provided tools that are both practical and highly reliable. These innovations not only benefit scientists and industries but also contribute to improving public health and environmental sustainability. Her mentorship has produced a generation of researchers who carry forward her values of precision, creativity, and interdisciplinary collaboration, thereby multiplying the reach of her influence.

Publications 

Study of interactions between DNA-ethidium bromide (EB) and DNA-acridine orange (AO), in solution, using hanging mercury drop electrode (HMDE).

Author: IC Gherghi, ST Girousi, AN Voulgaropoulos, R Tzimou-Tsitouridou
Journal: Talanta
Year: 2003

pH: principles and measurement.

Author: S Karastogianni, S Girousi, S Sotiropoulos
Journal: Encyclopedia of food and health
Year: 2016

An Electrochemical Sensor Based on Reduced Graphene Oxide, Gold Nanoparticles and Molecular Imprinted Over‐oxidized Polypyrrole for Amoxicillin Determination.

Author: H Essousi, H Barhoumi, S Karastogianni, ST Girousi
Journal: Electroanalysis
Year: 2020

Conclusion

Prof. Dr. Stella Girousi stands as a distinguished figure in the field of analytical chemistry, combining academic excellence, research innovation, and dedicated mentorship. Her pioneering work in voltammetric techniques and biosensor development has significantly advanced applications across environmental science, biotechnology, food safety, and medical diagnostics. Beyond her scientific achievements, she has shaped generations of scholars through her teaching and guidance, leaving a strong educational legacy. With her continued commitment to innovation and collaboration, Prof. Girousi remains a driving force in shaping the future of analytical chemistry, ensuring her influence will resonate in both scientific progress and societal benefit for years to come.

Hou-Yun Yang | Environmental Science | Best Researcher Award

Assoc Prof Dr. Hou-Yun Yang | Environmental Science | Best Researcher Award 

 

Assoc Prof Dr. Hou-Yun Yang, Anhui Jianzhu University, China

Assoc. Prof. Dr. Hou-Yun Yang is a distinguished faculty member at Anhui Jianzhu University, China, specializing in engineering and sustainable energy systems. Renowned for his contributions to thermal science and renewable energy research, Dr. Yang plays a pivotal role in guiding emerging scholars and advancing practical solutions in green energy technologies. His mentorship and academic leadership continue to inspire innovation and academic excellence in the field.

Author Profile

Orcid

🌱 Early Academic Pursuits

Xuefeng Jiang began his academic journey with a deep-rooted interest in science and innovation. His early education laid a strong foundation in engineering and the natural sciences, with a particular curiosity for sustainable and renewable technologies. This early interest eventually guided him to pursue higher education at Liaoning Technical University, one of China’s notable institutions for technical education and research. As a Master’s candidate starting in 2023, Jiang chose to specialize in renewable energy systems, aligning his academic trajectory with one of the world’s most urgent challenges—sustainable development and climate resilience. His academic record demonstrates both diligence and intellectual curiosity, making him a standout among his peers.

🛠️ Professional Endeavors

Although currently a student, Xuefeng Jiang has already begun to establish a solid professional identity through academic research and innovation. His focus lies in renewable energy, with a particular emphasis on thermal storage systems and energy efficiency. His work bridges theoretical research with practical engineering applications, showing a mature understanding of how academic inquiry can translate into real-world impact.

Jiang’s most notable contribution to date is his work on phase change energy storage systems. His publication in the prestigious journal Applied Thermal Engineering reflects the level of professional maturity he has already achieved. His research paper titled, “Thermal performance analysis of a double-helix heat tube phase change energy storage system”, illustrates an innovative and technically sound approach to improving energy efficiency in storage systems—an essential area for future smart energy infrastructure.

🔬 Research Contributions and Focus

Jiang’s research primarily revolves around thermal energy storage, phase change materials (PCMs), and sustainable energy conversion systems. The core of his work focuses on optimizing the heat transfer performance within energy storage devices using advanced designs like double-helix heat tubes. His work offers a new design paradigm for engineers and scientists working on clean and efficient thermal energy storage systems.

His landmark publication not only contributes to the academic body of knowledge but also provides a roadmap for industry practitioners to enhance renewable energy storage solutions. The citation DOI https://doi.org/10.1016/j.applthermaleng.2025.127208 stands as proof of his credibility and growing impact in the research community.

🏆 Accolades and Recognition

Though early in his career, Xuefeng Jiang’s work has already received academic validation through peer-reviewed publication in a high-impact journal indexed in SCI and Scopus. His contribution has been acknowledged by professionals and academics alike, particularly those working in thermal science, sustainable design, and renewable energy systems.

His dedication, innovation, and technical accuracy have positioned him as a strong contender for the “Best Researcher Award”, a recognition he seeks not for personal glory, but as a testament to the transformative potential of renewable technologies.

🌍 Impact and Influence

Jiang’s work addresses pressing global issues, including climate change, energy crisis, and sustainable infrastructure. By focusing on enhancing the efficiency of energy storage systems, he contributes to making renewable energy sources more viable, scalable, and adaptable. His research has the potential to influence policy formulation, industrial design, and future academic curricula in the fields of green engineering and energy management.

Moreover, as a young researcher, he inspires fellow students and junior colleagues to take up meaningful, solution-oriented research projects. His publication, mentorship under esteemed professors, and growing research footprint contribute positively to China’s and the world’s sustainable development goals.

🌟 Legacy and Future Contributions

Xuefeng Jiang envisions a future where energy systems are clean, cost-efficient, and universally accessible. As he continues his academic pursuits, he plans to expand his work into multi-phase heat transfer systems, smart thermal grids, and AI-assisted energy optimization. His ambition is not only to publish more but to collaborate with industries, policy-makers, and academic institutions globally.

He also aims to file patents, co-author books, and eventually mentor future generations of energy engineers. With his growing profile on platforms like ORCID, Jiang is gradually carving out a space for himself in the international research community.

📖Publication Top Notes


📘 Systematic study of microplastics on methane production in anaerobic digestion: Performance and microbial response

Contributors: Chen-Yu Li; Li Yu; Xin He; Xian-Huai Huang; Wei-Hua Li; Hou-Yun Yang; Tong-Zhan Xue; Jun Liu; Zhen Yan; Ying Hui Ong
Journal:  Environmental Chemical Engineering
Year: 2025

📘 Nutrient Removal and Bioelectricity Generation in a Constructed Wetland-Microbial Fuel Cell: Performance of Pyrite Anode Materials
ContributorsShu Feng; Pei Xu; Jun-Cheng Han; Hou-Yun Yang; Xian-Huai Huang; Li Yu; Jun Liu; Bin-Bin Zhang; Wei-Hua Li
Journal: Environmental Engineering Science
Year: 2025

📘 A modified two-point titration method for the determination of volatile fatty acids in anaerobic systems

ContributorsZhe-Xuan Mu; Chuan-Shu He; Jian-Kai Jiang; Jie Zhang; Hou-Yun Yang; Yang Mu
Journal: Chemosphere
Year: 2018