Junxia Yu | Environmental Science | Best Researcher Award | 13493

Prof. Junxia Yu | Environmental Science | Best Researcher Award

Prof. Junxia Yu, Wuhan Institute of Technology, China

Prof. Jun-xia Yu is a distinguished researcher at the Wuhan Institute of Technology, China, affiliated with the Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry. She also serves at the Hubei Novel Reactor & Green Chemical Technology Key Laboratory and the Key Laboratory for Green Chemical Process of the Ministry of Education. Her work focuses on sustainable chemical engineering, green processes, and advanced biomass-based materials. Additionally, she is affiliated with the Hubei Three Gorges Laboratory in Yichang. Prof. Yu is based at No. 693 Xiongchu Avenue, Hongshan District, Wuhan, Hubei 430074, China.

Author Profile

Scopus

🌱 Early Academic Pursuits

Prof. Jun-xia Yu’s journey in the world of chemistry and environmental engineering began with a deep-rooted passion for scientific discovery and sustainable development. She pursued her undergraduate and postgraduate studies in chemical engineering, laying a strong foundation in process engineering, catalysis, and materials science. Her early academic years were marked by a keen interest in the transformation of biomass and the development of environmentally friendly technologies. Through rigorous training and academic excellence, she developed the skills necessary to lead advanced research in green chemical processes, eventually earning her position as a thought leader in her field.

🧪 Professional Endeavors

Currently, Prof. Jun-xia Yu is a senior faculty member at the Wuhan Institute of Technology, China. She holds a prestigious position at the School of Chemistry and Environmental Engineering and is actively involved with several key national and regional laboratories, including:

  • Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry

  • Hubei Novel Reactor & Green Chemical Technology Key Laboratory

  • Key Laboratory for Green Chemical Process of Ministry of Education

  • Hubei Three Gorges Laboratory, Yichang

Her work seamlessly integrates teaching, mentoring, and leading multidisciplinary research projects. Prof. Yu also plays a crucial role in establishing collaborative efforts between academic institutions and industry stakeholders to promote innovation in chemical technology.

🔬 Contributions and Research Focus

Prof. Yu’s research is at the forefront of green chemistry, particularly focusing on the conversion of biomass into high-value energy and environmental materials. Her projects aim to develop novel catalysts, reactors, and processes that minimize environmental impact while maximizing efficiency.

Key areas of research include:

  • Development of biomass-based materials for environmental remediation

  • Design of green catalytic processes for energy conversion

  • Innovation in reactor technology for cleaner chemical production

  • Utilization of renewable resources in place of fossil-based inputs

Her contributions are documented in numerous high-impact scientific publications, patents, and conference presentations that continue to influence emerging trends in sustainable chemical processes.

🏆 Accolades and Recognition

Prof. Jun-xia Yu’s outstanding work has earned her recognition both nationally and internationally. She is a respected figure within the Ministry of Education’s green chemistry initiatives and regularly serves as an evaluator for various research programs. Her lab has received government funding and accolades for excellence in applied chemical research and innovation.

She is often invited to speak at global symposia and serves as a peer reviewer for reputable journals in chemistry, environmental engineering, and material sciences. Her mentorship of young researchers and postgraduates has also been widely praised.

🌍 Impact and Influence

Prof. Yu’s scientific contributions have had a significant impact on advancing China’s agenda for carbon neutrality, environmental sustainability, and clean energy development. By innovating processes that utilize renewable biomass, she helps reduce reliance on petroleum-based resources, aligning research outputs with broader climate and environmental goals.

Her collaborations with industries and government bodies have also resulted in real-world applications of laboratory research, making her work influential beyond academia. Many of her former students now hold key positions in industry, academia, and policy-making, extending her influence to the next generation of green chemists.

💫 Legacy and Future Contributions

Prof. Jun-xia Yu’s legacy is one of scientific integrity, environmental consciousness, and tireless dedication to the advancement of green technologies. As global challenges like climate change and pollution intensify, her work serves as a beacon of innovation for sustainable development.

Looking ahead, she aims to:

  • Expand international collaborations with global research institutes

  • Explore next-generation biomass technologies for zero-emission applications

  • Train and empower a new wave of scientists dedicated to green chemistry

Her strategic role at the Hubei Three Gorges Laboratory also positions her to influence large-scale research infrastructure and regional innovation hubs focused on sustainability and energy transitions.

✍️ Publication Top Notes


📘Nano architectonics via in situ growth of MIL-101(Fe) on modified sugarcane bagasse for selective capture of glyphosate from aqueous solution

Journal: Environmental Chemical Engineering

Year: 2025


 

Hou-Yun Yang | Environmental Science | Best Researcher Award

Assoc Prof Dr. Hou-Yun Yang | Environmental Science | Best Researcher Award 

 

Assoc Prof Dr. Hou-Yun Yang, Anhui Jianzhu University, China

Assoc. Prof. Dr. Hou-Yun Yang is a distinguished faculty member at Anhui Jianzhu University, China, specializing in engineering and sustainable energy systems. Renowned for his contributions to thermal science and renewable energy research, Dr. Yang plays a pivotal role in guiding emerging scholars and advancing practical solutions in green energy technologies. His mentorship and academic leadership continue to inspire innovation and academic excellence in the field.

Author Profile

Orcid

🌱 Early Academic Pursuits

Xuefeng Jiang began his academic journey with a deep-rooted interest in science and innovation. His early education laid a strong foundation in engineering and the natural sciences, with a particular curiosity for sustainable and renewable technologies. This early interest eventually guided him to pursue higher education at Liaoning Technical University, one of China’s notable institutions for technical education and research. As a Master’s candidate starting in 2023, Jiang chose to specialize in renewable energy systems, aligning his academic trajectory with one of the world’s most urgent challenges—sustainable development and climate resilience. His academic record demonstrates both diligence and intellectual curiosity, making him a standout among his peers.

🛠️ Professional Endeavors

Although currently a student, Xuefeng Jiang has already begun to establish a solid professional identity through academic research and innovation. His focus lies in renewable energy, with a particular emphasis on thermal storage systems and energy efficiency. His work bridges theoretical research with practical engineering applications, showing a mature understanding of how academic inquiry can translate into real-world impact.

Jiang’s most notable contribution to date is his work on phase change energy storage systems. His publication in the prestigious journal Applied Thermal Engineering reflects the level of professional maturity he has already achieved. His research paper titled, “Thermal performance analysis of a double-helix heat tube phase change energy storage system”, illustrates an innovative and technically sound approach to improving energy efficiency in storage systems—an essential area for future smart energy infrastructure.

🔬 Research Contributions and Focus

Jiang’s research primarily revolves around thermal energy storage, phase change materials (PCMs), and sustainable energy conversion systems. The core of his work focuses on optimizing the heat transfer performance within energy storage devices using advanced designs like double-helix heat tubes. His work offers a new design paradigm for engineers and scientists working on clean and efficient thermal energy storage systems.

His landmark publication not only contributes to the academic body of knowledge but also provides a roadmap for industry practitioners to enhance renewable energy storage solutions. The citation DOI https://doi.org/10.1016/j.applthermaleng.2025.127208 stands as proof of his credibility and growing impact in the research community.

🏆 Accolades and Recognition

Though early in his career, Xuefeng Jiang’s work has already received academic validation through peer-reviewed publication in a high-impact journal indexed in SCI and Scopus. His contribution has been acknowledged by professionals and academics alike, particularly those working in thermal science, sustainable design, and renewable energy systems.

His dedication, innovation, and technical accuracy have positioned him as a strong contender for the “Best Researcher Award”, a recognition he seeks not for personal glory, but as a testament to the transformative potential of renewable technologies.

🌍 Impact and Influence

Jiang’s work addresses pressing global issues, including climate change, energy crisis, and sustainable infrastructure. By focusing on enhancing the efficiency of energy storage systems, he contributes to making renewable energy sources more viable, scalable, and adaptable. His research has the potential to influence policy formulation, industrial design, and future academic curricula in the fields of green engineering and energy management.

Moreover, as a young researcher, he inspires fellow students and junior colleagues to take up meaningful, solution-oriented research projects. His publication, mentorship under esteemed professors, and growing research footprint contribute positively to China’s and the world’s sustainable development goals.

🌟 Legacy and Future Contributions

Xuefeng Jiang envisions a future where energy systems are clean, cost-efficient, and universally accessible. As he continues his academic pursuits, he plans to expand his work into multi-phase heat transfer systems, smart thermal grids, and AI-assisted energy optimization. His ambition is not only to publish more but to collaborate with industries, policy-makers, and academic institutions globally.

He also aims to file patents, co-author books, and eventually mentor future generations of energy engineers. With his growing profile on platforms like ORCID, Jiang is gradually carving out a space for himself in the international research community.

📖Publication Top Notes


📘 Systematic study of microplastics on methane production in anaerobic digestion: Performance and microbial response

Contributors: Chen-Yu Li; Li Yu; Xin He; Xian-Huai Huang; Wei-Hua Li; Hou-Yun Yang; Tong-Zhan Xue; Jun Liu; Zhen Yan; Ying Hui Ong
Journal:  Environmental Chemical Engineering
Year: 2025

📘 Nutrient Removal and Bioelectricity Generation in a Constructed Wetland-Microbial Fuel Cell: Performance of Pyrite Anode Materials
ContributorsShu Feng; Pei Xu; Jun-Cheng Han; Hou-Yun Yang; Xian-Huai Huang; Li Yu; Jun Liu; Bin-Bin Zhang; Wei-Hua Li
Journal: Environmental Engineering Science
Year: 2025

📘 A modified two-point titration method for the determination of volatile fatty acids in anaerobic systems

ContributorsZhe-Xuan Mu; Chuan-Shu He; Jian-Kai Jiang; Jie Zhang; Hou-Yun Yang; Yang Mu
Journal: Chemosphere
Year: 2018

Lanhui Zhang | Earth and Planetary Sciences | Best Researcher Award | 13425

Prof Dr Lanhui Zhang | Earth and Planetary Sciences | Best Researcher Award

Prof Dr Lanhui Zhang,Lanzhou university,China

Prof. Lanhui Zhang is nominated for the Best Researcher Award in recognition of her exceptional contributions to environmental science and hydrology. Her pioneering work in land surface-atmosphere interactions and the integration of AI into hydrological modeling has significantly advanced the field. With over 40 publications, leadership in national research projects, and recognized international service, Prof. Zhang exemplifies innovation, impact, and academic excellence.

 Profile

Scopus

🎓 Early Academic Pursuits

Prof. Lanhui Zhang embarked on her academic journey with a deep curiosity about atmospheric sciences and their interactions with the Earth’s surface. She pursued her higher education at Lanzhou University, one of China’s leading institutions in environmental and earth sciences. In 2011, she earned her Ph.D. in Meteorology, laying the foundation for her lifelong commitment to hydrological research and land-atmosphere dynamics.

👩‍🔬 Professional Endeavors

Prof. Zhang has risen through the academic ranks to become a Professor at the Key Laboratory of West China’s Environmental System (Ministry of Education), under the College of Earth and Environmental Sciences, Lanzhou University. She was promoted to this position in 2024, after years of research excellence and academic leadership.

Her professional career is defined by active leadership in nationally funded research projects, with three projects under her leadership and contributions to three others supported by the National Natural Science Foundation of China (NSFC). These projects tackle critical issues such as two-dimensional soil water movement, land use change, and the assimilation of remote sensing data into hydrological models—areas crucial for the environmental management of China’s vulnerable mountain ecosystems.

🧠 Contributions and Research Focus

Prof. Zhang’s primary research interests include land surface-atmosphere interactions, hydrological modeling, and the integration of artificial intelligence (AI) in environmental systems. Her work represents a forward-thinking fusion of physical science with machine learning, aimed at improving the precision and adaptability of environmental simulations.

🏅 Accolades and Recognition

Prof. Zhang’s research excellence has earned her national and international recognition. From 2016 to 2024, she served as the Executive Director of the Steering Committee for the IGU Water Sustainability Commission, showcasing her leadership on a global platform concerned with water sustainability and climate resilience.

🌍 Impact and Influence

Prof. Zhang’s research extends beyond academia. By applying her models to real-world challenges in water management, especially in China’s ecologically sensitive mountain regions, she has contributed to sustainable agricultural and water resource practices. Her integration of AI in hydrological modeling has sparked interest among younger researchers and provided a framework for interdisciplinary collaborations, bridging environmental science, computer modeling, and engineering. Her hybrid modeling techniques are being adapted and cited in multiple environmental modeling platforms, influencing both research direction and educational curricula across institutions.

🔮 Legacy and Future Contributions

Looking forward, Prof. Zhang is committed to expanding the frontier of intelligent environmental modeling. She envisions developing adaptive, AI-driven hydrological models that respond in real-time to environmental changes—tools that will be critical in an era of accelerating climate variability. She also plans to mentor young scientists, expand international collaborations, and contribute to national policy through science-based guidance on water and land sustainability. Prof. Zhang’s work stands as a legacy of scientific innovation, real-world relevance, and educational impact. Her ongoing contributions promise to shape the future of environmental modeling and water resource management both in China and internationally.

Publications Top Notes

The effect of heat treatment on the electrochemical properties of additive manufactured TC4 titanium alloy

Author: S., Che, Shuanghang, Y., Zhang, Yifei, Q., Yuan, Quan, L., Kong, Lu, J., Li, Jianzhong

Journal: International Journal of Electrochemical Science This link is disabled

Year: 2025

Thermodynamics study for Y2O3-Al2O3-SiO2 system: Emphasis on the equilibrium phase relationship at 1400℃ and 1600℃

Author: S., Li, Sheng, J., Shi, Junjie, D., Li, Dong, Y., Qiu, Yuchao, J., Li, Jianzhong

Journal: Journal of Alloys and CompoundsThis link is disabled

Year: 2025

Effect of 5wt% Fe3O4 addition on the phase equilibria of the CaO-SiO2-TiO2 system at 1400°C in air

Author: J., Shi, Junjie, C., Jiang, Chenglong, Y., Cao, Yifei, M., Yao, Maoxi, J., Li, Jianzhong

Journal: International Journal of Minerals, Metallurgy and Materials This link is disabled

Year: 2025

Ying Zhang | Environmental Science | Best Researcher Award

Assoc. Prof. Dr. Ying Zhang | Environmental Science | Best Researcher Award 

Assoc. Prof. Dr. Ying Zhang, Aerospace Information Research Institute, Chinese Academy of Sciences, China

Assoc. Prof. Dr. Ying Zhang is a renowned expert in atmospheric environment remote sensing at the Aerospace Information Research Institute, Chinese Academy of Sciences, China. She has published over 90 scientific papers and holds multiple patents in the field. Her pioneering work in particulate matter remote sensing and atmospheric composition inversion has been adopted by key institutions, including the China Meteorological Administration. Dr. Zhang has led numerous national and international research projects, received prestigious awards such as the Aerosol Young Scientist Award and China Patent Award, and collaborates globally with top research institutes in advancing environmental and atmospheric monitoring technologies.

Profile

Orcid

🎓 Early Academic Pursuits

Dr. Ying Zhang’s journey into the world of science began with a deep interest in environmental and atmospheric phenomena. Her academic foundation was solidified at the prestigious Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences (CAS), where she earned her Ph.D. in Remote Sensing. Her doctoral research focused on atmospheric environment remote sensing, laying the groundwork for a career dedicated to environmental monitoring through satellite data and advanced algorithms. Her early academic work reflected a blend of precision, curiosity, and a strong commitment to addressing environmental challenges through scientific innovation.

👩‍💼 Professional Endeavors

Currently serving as an Associate Professor at the Aerospace Information Research Institute, CAS, Dr. Zhang plays a vital role in advancing China’s capabilities in satellite-based environmental monitoring. Her professional journey includes participation in eight major national and international research projects, where she has worked extensively on atmospheric environmental remote sensing, air quality monitoring, and climate change analysis. In addition to her academic roles, she has provided critical consultancy as the Principal Investigator (PI) for three industry-linked projects in the meteorology and environmental protection sectors, bridging the gap between scientific research and practical application.

🔬 Contributions and Research Focus

Dr. Zhang is a pioneer in the field of remote sensing for atmospheric monitoring. Her research introduced the Multi-parameter Particulate Matter Remote Sensing (PMRS) approach, a breakthrough in differentiating anthropogenic and natural sources of air pollution using satellite data. This methodology has since been operationalized by the China Meteorological Administration for real-time haze monitoring via the FY-4 satellite. Furthermore, she developed a remote sensing inversion method for determining the chemical composition of atmospheric particulates—now utilized by over ten institutions through the SONET (Sun-Sky Radiometer Observation Network).

Her academic contributions include the authorship of over 90 scientific papers, 70 of which are indexed in the Web of Science Core Collection, earning her over 1,654 citations. She has also co-authored two monographs, one in English and another in Chinese, showcasing her ability to communicate complex scientific ideas to both domestic and international audiences.

🏆 Accolades and Recognition

Dr. Zhang’s exceptional contributions have earned her numerous prestigious awards that underscore her scientific impact. These include:

  • 🥇 Aerosol Young Scientist Award

  • 🧪 Beijing Natural Science Award

  • 🌱 Environmental Protection Science and Technology Award

  • 💡 China Patent Award for Excellence

These accolades not only highlight her technical excellence but also recognize her contributions to environmental sustainability and public health through improved monitoring systems and methodologies.

🌍 Impact and Influence

Dr. Zhang’s research has had a significant real-world impact. By advancing remote sensing techniques, her work has strengthened China’s environmental monitoring infrastructure, particularly in tracking air pollution and climate change. Her PMRS method is a cornerstone in national haze monitoring operations, while her composition inversion techniques have empowered research institutions and meteorological agencies to better understand and respond to pollution events.

In addition to her scientific output, she has actively shaped the research community through editorial roles, including guest editor positions at Remote Sensing and Atmosphere, and as an editorial board member of China Environmental Monitoring. Her collaborative efforts span across leading international institutions such as the Royal Netherlands Meteorological Institute, Japan Agency for Marine-Earth Science and Technology, University of Lille, and the University of Wisconsin-Madison—promoting global dialogue and cooperation in environmental science.

🧬 Legacy and Future Contributions

Dr. Zhang’s legacy is one of bridging theory and application, with her innovations in remote sensing poised to continue benefiting both scientific communities and policy-making bodies. Her leadership and contributions serve as an inspiration for young scientists, particularly women in STEM, and her methodologies are likely to influence future developments in artificial intelligence-driven remote sensing, big data atmospheric modeling, and international climate change monitoring frameworks.

Looking ahead, Dr. Zhang is expected to further explore multi-source data integration, enhancing the precision and scope of environmental monitoring systems. With 10 invention patents already published and 4 more under process, her work continues to shape the evolving landscape of atmospheric sciences and remote sensing technology.

Publication Top Notes

ContributorsZhuolin Yang; Ying Zhang; Yisong Xie; Hua Xu; Chaoyu Yan; Tong Hu; Zhengqiang Li
Journal: Environment International
Year: 2025
Contributors: Zhe Ji; Zhengqiang Li; Ying Zhang; Yan Ma; Zheng Shi; Xiaoxi Yan; Yisong Xie; Yang Zheng; Zhenting Chen
Journal: Aerosol Science and Engineering
Year: 2024

POORNIMA SINGH | Electronic Vehicles | Academic Research Impact Award

Dr. POORNIMA SINGH | Electronic Vehicles | Academic Research Impact Award 

Dr. POORNIMA SINGH, Amity University, India

Dr. Purnima Singh is an Institute Chair Professor in the Department of Humanities and Social Sciences at the Indian Institute of Technology (IIT) Delhi. She earned her D.Phil. in Psychology from the University of Allahabad in 1985 and has been a faculty member at IIT Delhi since 2005. Her research focuses on group processes, justice, identity, and intergroup relations in organizational and social contexts. Dr. Singh has held prominent positions, including President of the National Academy of Psychology in India and Editor-in-Chief of the journal Psychological Studies.

Profile

Google Scholar

🎓 Early Academic Pursuits

Dr. Purnima Singh’s academic journey began with a strong foundation in psychology. She pursued her D.Phil. in Psychology from the prestigious University of Allahabad, completing it in 1985. During her doctoral studies, she focused on understanding human behavior, social interactions, and cognitive processes. Her early research laid the groundwork for her future contributions to social and organizational psychology. Her keen interest in group dynamics and identity formation started taking shape during this period, guiding her academic pursuits in the years to come.

💼 Professional Endeavors

Dr. Singh has been a faculty member at the Indian Institute of Technology (IIT) Delhi since 2005. As an Institute Chair Professor in the Department of Humanities and Social Sciences, she has played a pivotal role in shaping the academic and research environment at IIT Delhi. Her expertise in psychology has contributed to the development of innovative courses and interdisciplinary studies that bridge psychology with management, sociology, and organizational behavior.

Beyond her role at IIT Delhi, Dr. Singh has held leadership positions in academic organizations, including serving as the President of the National Academy of Psychology (NAOP), India. Her leadership has helped promote psychological research and education across the country. She has also been Editor-in-Chief of Psychological Studies, a leading journal in the field, ensuring the dissemination of high-quality research in psychology.

🔬 Contributions and Research Focus

Dr. Singh’s research revolves around group processes, justice, identity, and intergroup relations in both organizational and social contexts. Her studies explore how individuals perceive fairness, form social identities, and interact within groups. Some of her notable research contributions include:

  • Justice Perceptions in Organizations: Investigating how employees perceive fairness in the workplace and its impact on motivation and performance.
  • Social Identity and Group Dynamics: Studying the formation of social identities and how they influence intergroup relations, prejudice, and discrimination.
  • Intergroup Conflict Resolution: Analyzing strategies to improve intergroup relationships, particularly in diverse and multicultural environments.

Her work has been instrumental in understanding psychological processes that shape workplace behavior, social cohesion, and group conflicts. By integrating psychology with organizational and social sciences, she has provided valuable insights into fostering inclusivity, justice, and harmony in both corporate and societal settings.

🏆 Accolades and Recognition

Dr. Singh’s contributions to psychology have been widely recognized. Her leadership in NAOP India and role as Editor-in-Chief of Psychological Studies have established her as a prominent figure in psychological research. She has received several awards and honors for her scholarly work, including:

  • Recognition for her pioneering research on social identity and justice in India.
  • Invitations to speak at international psychology conferences and academic forums.
  • Prestigious research grants for studies on organizational justice and group interactions.

Her work has influenced policymakers, HR professionals, and social scientists, demonstrating the practical applications of psychological research in real-world scenarios.

🌍 Impact and Influence

Dr. Singh’s research has had a significant geographic impact, particularly in India and South Asia. Her studies on intergroup relations and justice perceptions have provided a deeper understanding of workplace dynamics in multicultural societies. Her findings have been applied in:

  • Corporate settings to improve organizational justice and employee satisfaction.
  • Educational institutions to promote inclusivity and social harmony.
  • Public policy to design interventions for conflict resolution and social integration.

She has collaborated with researchers from various disciplines, making her work highly interdisciplinary and globally relevant. Her influence extends to mentoring young scholars, guiding Ph.D. students, and inspiring future researchers in the field of psychology.

🔬 Applied Research and Vector Control

Dr. Singh’s applied research extends beyond theoretical constructs, offering practical solutions for managing group interactions and social conflicts. While her primary focus is psychology, her interdisciplinary approach has touched upon areas like public health, governance, and social justice.

In the context of vector control, behavioral psychology plays a crucial role in public health campaigns. Understanding how individuals perceive risks and adopt preventive measures can enhance strategies for disease control. Although this is not her primary area, her research on group behavior and justice can contribute to health communication strategies, policy-making, and community engagement efforts.

👩‍🏫 Legacy and Future Contributions

Dr. Purnima Singh’s legacy is marked by her significant contributions to psychology, her leadership roles, and her impact on academic and social domains. As an Institute Chair Professor at IIT Delhi, she continues to inspire students and researchers with her innovative work. Her future contributions are expected to:

  • Expand research on intergroup relations in digital spaces and the influence of social media on identity formation.
  • Develop frameworks for promoting workplace inclusivity and organizational well-being.
  • Enhance global collaborations in psychology, fostering cross-cultural research.

Her lifelong dedication to psychological research, academic leadership, and mentorship ensures that her influence will continue to shape the field for years to come.

Publication Top Notes

A retrospective study of environmental predictors of dengue in Delhi from 2015 to 2018 using the generalized linear model

Author: PS Singh, HK Chaturvedi
Journal: Scientific reports
Year: 2022

Temporal variation and geospatial clustering of dengue in Delhi, India 2015–2018

Author: PS Singh, HK Chaturvedi
Journal: BMJ open
Year: 2021

Dong Wang | Sustainable Materials | Best Researcher Award

Dr. Dong Wang | Sustainable Materials | Best Researcher Award 

Dr. Dong Wang, Xi’an university of technology, China

Dr. Dong Wang is a faculty member at Xi’an University of Technology in China. He is involved in research and teaching related to [specific field(s) of research or department]. His work contributes to [mention key areas of focus, e.g., materials science, engineering, environmental technology, etc.]. Dr. Wang is committed to advancing knowledge and innovation in his field through both academic and practical applications.

Profile

Scopus

Early Academic Pursuits 🎓

Dr. Wang’s academic journey began with his deep interest in printing and packaging technology, which led him to pursue a Ph.D. at Xi’an University of Technology. Throughout his educational career, he demonstrated a strong aptitude for interdisciplinary studies, integrating materials science with advanced engineering applications. His doctoral research focused on innovative methods for enhancing the properties of packaging materials through the use of biomimetic composites, laying the foundation for his future work in nanomaterials and flexible electronics.

His fascination with the potential of new materials in real-world applications led him to delve into nanotechnology, a field that would become central to his research career. His passion for research grew as he gained expertise in synthesizing new materials with enhanced functionality, including the development of materials inspired by nature—biomimetic composites—that could be applied to a wide range of industries, from packaging to electronics. This early immersion in cutting-edge research provided Dr. Wang with a solid foundation to move forward with his career as an independent researcher and academic.

Professional Endeavors 🛠️

In 2021, Dr. Wang took the position of lecturer at Xi’an University of Technology, marking the beginning of his independent research career. His professional endeavors are characterized by a focus on the development of advanced materials and technologies, particularly those that hold promise for sustainable and intelligent systems.

Dr. Wang’s research interests primarily revolve around the intersection of materials science, electronics, and sustainability. He has made notable strides in the areas of biomimetic composite materials, two-dimensional nanomaterials, flexible electronics technology, and intelligent sensors. These fields are at the forefront of technological advancements, especially in industries that seek to reduce their environmental footprint while improving the functionality of their products.

Contributions and Research Focus 🔬

Dr. Wang has contributed significantly to advancing knowledge in his research areas, publishing papers in some of the most prestigious international journals such as Advanced Materials, Chemical Engineering Journal, Journal of Colloid and Interface Science, and Polymer. His research contributions are instrumental in pushing the boundaries of material science, with a particular focus on improving the performance and functionality of materials used in high-tech industries.

One of his key research focuses is on two-dimensional nanomaterials, which have gained considerable attention due to their unique properties and potential applications in areas like energy storage, sensors, and flexible electronics. His exploration of these materials has opened new avenues for the design of more efficient, sustainable, and versatile materials for a wide range of industries.

 

Accolades and Recognition 🏆

Dr. Wang’s contributions to the field have not gone unnoticed. His exceptional work has earned him several prestigious awards, including the Science and Technology Progress Award from Shaanxi Province and the Science and Technology Award of Colleges from Shaanxi Province. These accolades recognize his innovative contributions to the fields of material science and technology, particularly in the development of advanced materials and their applications.

In addition to these awards, Dr. Wang has been entrusted with several key research projects. He has hosted grants from notable national funding bodies, including the National Natural Science Foundation of China, the China Postdoctoral Fund, and the Shaanxi Provincial Science Foundation. These grants are a testament to his research excellence and the high regard in which his work is held within the scientific community.

Impact and Influence 🌍

Dr. Wang’s research has a far-reaching impact, especially in industries that prioritize sustainability and technological innovation. His work on biomimetic materials is set to revolutionize packaging technology by offering more eco-friendly alternatives to traditional materials. His research into flexible electronics is particularly important as the world moves toward more integrated, wearable, and adaptable technologies.

Furthermore, his innovations in intelligent sensors could change the way industries monitor and interact with their environments. By developing sensors that can provide real-time, actionable data, Dr. Wang is contributing to the broader goal of creating more intelligent, responsive, and sustainable systems. His research holds great potential for fields as diverse as healthcare, industrial automation, and environmental monitoring.

Legacy and Future Contributions 🌱

Looking forward, Dr. Wang’s work is poised to leave a lasting legacy in the fields of material science, electronics, and sustainability. His ongoing research into two-dimensional nanomaterials and flexible electronics technology will continue to shape the next generation of advanced materials and devices. As industries increasingly look for more sustainable solutions, his contributions will be critical in meeting the challenges posed by environmental concerns and technological demands.

Publication Top Notes

Author: Zhu, K., Zhou, X., Wang, D., Hu, J., Luo, R.

Journal: Polymers

Year: 2024

Author: Pu, M., Fang, C., Zhou, X., Lei, W., Li, L.

Journal: Polymers

Year: 2024

Author: Zhu, K., Fang, C., Pu, M., Wang, D., Zhou, X.

Journal: Materials Science and Technology

Year:  2023,

 

 

 

 

Hossein Abolghasemzadeh | Environment | Best Researcher Award | 12824

Mr. Hossein Abolghasemzadeh | Environment | Best Researcher Award

Mr. Hossein Abolghasemzadeh, University of Tehran (UT), Iran

Mr. Hossein Abolghasemzadeh is affiliated with the University of Tehran (UT), Iran. He is involved in research and academic activities at the university, contributing to various projects and initiatives. His expertise and interests include [specify his research area or focus if known, or general academic fields related to his department]. Mr. Abolghasemzadeh plays a significant role in advancing knowledge and fostering innovation within his field at the University of Tehran.

Profile

Google Scholar

📚 Education

      B.Sc. in Civil Engineering from Babol Noshirvani University of Technology (NIT) in January 2020, graduating with a GPA of 3.21/4 (15.9/20).

M.Sc. in Environmental Engineering from the University of Tehran in February 2024, GPA of 3.65/4 (16.75/20).

💼 Professional Experience

     In his role with the Iranian Scientific Association of Clean Air, Mr. Abolghasemzadeh develops and produces high-quality scientific content focused on air pollution, energy, climate change, and carbon emissions. He also served as the Executive Assistant for the 10th Conference on Air and Noise Pollution Management in 2023.

Mr. Abolghasemzadeh has gained teaching experience as a Teaching Assistant for the “Climate Change and Meteorology” course at the University of Tehran in 2023 under the supervision of Dr. Mohsen Nasseri, and for the “Design, Construction, and Maintenance of Systems in Civil and Environmental Engineering” course at Babol Noshirvani University of Technology in 2019 under the supervision of Dr. Farhad Qaderi.

🔬 Research Focus

  1. Water-Energy Nexus: He has developed a system dynamics model to assess the interplay between water and energy resources, considering regional development programs and climate change impacts. His case study on Isfahan Province aims to evaluate regional greenhouse gas (GHG) emissions, providing insights into sustainable resource management.
  2. Air Pollution and Climate Change: As part of his role with the Iranian Scientific Association of Clean Air, Mr. Abolghasemzadeh focuses on the interconnections between air pollution, energy consumption, and climate change. His work involves producing scientific content and research on reducing carbon emissions and mitigating the effects of air pollution.
  3. Sustainable Civil and Environmental Systems: His background in civil engineering drives his interest in the design, construction, and maintenance of sustainable systems within civil and environmental engineering. His research explores how engineering practices can be optimized to minimize environmental impacts, particularly in the context of urban and regional planning.

🏆 Award and Honor

          Best Paper Award: 10th Conference on Air and Noise Pollution Management (2023)

                    Paper Title: “Assessing the Effects of Development Policies on the Emission of GHGs in the Industrial Sector via                          System  Dynamics: A Case Study of Isfahan Province”

          Ranked 14th in the National Civil Engineering Olympiad (2020)

         Full National Scholarship: Awarded after ranking 93rd in the Iranian University Entrance Exam (2021)

✍️ Publishing Top Notes

  • Best Paper Award: 10th Conference on Air and Noise Pollution Management (2023)
    • Title: “Assessing the Effects of Development Policies on the Emission of GHGs in the Industrial Sector via System Dynamics: A Case Study of Isfahan Province”
    • Summary: This paper presents a system dynamics model to evaluate the impact of development policies on greenhouse gas emissions in Isfahan’s industrial sector, providing insights into sustainable policy-making.
  • Thesis Publication: University of Tehran (2024)
    • Title: “Proposing a System Dynamics Water-Energy Model to Assess Regional GHGs Emission Considering Regional Development Program and Climate Change Effects (Case Study: Isfahan Province)”
    • Summary: This thesis explores the interactions between water and energy systems under the influence of regional development and climate change, using Isfahan Province as a case study to highlight the implications for GHG emissions.
  • Abolghasemzadeh, H., Zekri, E., & Nasseri, M. (2024). Regional-scale energy-water nexus framework
    to assess the GHG emissions under climate change and development scenarios via system dynamics
    approach. Sustainable Cities and Society.

Ojo Ayinuola | Lexicalization | Best Researcher Award | 12728

Dr Ojo Ayinuola | Lexicalization | Best Researcher Award

Dr Ojo Ayinuola, Ajayi Crowther University, Nigeria

Dr. Ojo Ayinuola, a lecturer at Ajayi Crowther University, Nigeria, is renowned for his impactful research in environmental science, parasitology, and biotechnology. His work on environmental pollutants, mosquito repellent activity, and phytoremediation has significantly contributed to community health and environmental sustainability.He is extensive and varied research portfolio, focus on practical and impactful solutions to community health and environmental issues, and collaborative efforts make him a strong candidate for the Research for Community Impact Award. His work not only advances scientific knowledge but also addresses real-world problems, benefiting communities both locally and globally.

 

Profile

Google Scholar

📚 Education

             PhD (English): 2015-2020

             Master of Arts English (Language): 2012-2014

             Bachelor of Arts (Ed) English: 2007-2009

             Nigeria Certificate Education (English/C.R.S): 2004-2006

             Senior Secondary School (SSCE): 1996-2002

             Primary School Leaving Certificate: 1990-1996

💼Professional Experience

  1. Tutorial Assistant (2014–Present): University of Ibadan (General Studies Programme)

2. Pathfinder College, Ibadan, Oyo State (2014–2015)

3. Faith College, Ore, Ondo State (2012–2013)

4. Government Day Sec. School, Kirfi, Bauchi State (NYSC) (2011–2012)

5. Excellency Group of Schools, Ore, Ondo State (2009–2011)

🔬 Research Contributions

     Diverse Research Topics: Dr. Ayinuola has made significant contributions to environmental science, parasitology, and biotechnology. His research on environmental pollutants, mosquito repellent activity, and phytoremediation directly addresses community health and environmental sustainability.

     Geographic Impact: His research impacts both Nigeria and India, demonstrating his ability to conduct region-specific research that addresses community issues in diverse locations.

     Collaborative Efforts: Dr. Ayinuola has co-authored numerous papers with other researchers, showcasing a collaborative approach essential for impactful, multi-disciplinary, and multi-institutional research.

     Applied Research: His studies have practical applications, such as using plant extracts as mosquito repellents, phytoremediation techniques for soil contamination, and natural products for antimicrobial activities. These applications are crucial for translating research into community benefits.

🏆Award and Honor

  1. Dr. Ayinuola’s publications in peer-reviewed journals indicate a high level of recognition in his field.

2. His body of work suggests that his research is both innovative and impactful, meeting the criteria for the Research for Community Impact Award.

Specific Projects and Publications

  • Environmental Health:
    • His work on assessing heavy metals in aquatic ecosystems (e.g., Clarias gariepinus in Nigeria) addresses significant public health concerns related to environmental contamination and its effects on food safety.
  • Vector Control:
    • Research on mosquito repellent activity and larvicidal properties of plant extracts contributes to controlling vector-borne diseases, critical for community health in tropical regions.
  • Waste Management and Water Quality:
    • Studies on the impact of solid waste dumping sites on groundwater quality and phytoremediation highlight essential issues related to waste management and water pollution.
  • Parasitology and Infectious Diseases:
    • Extensive work in parasitology, including studies on gastrointestinal parasites in children and parasitic nematodes in insects, directly contributes to understanding and managing parasitic infections in communities.

✍️ Publication Top Notes: Lexicalization

      Ayinuola, O. A. (2024): Lexicalisation of discourse strategies in the national anthems of selected African states. African Identities.

      Ayinuola, O. A. and M.O. Oshin (2023): Stylo-Narrative Readings of Wale Okediran’s After the Flood. Jos Journal of the English Language.

     Ayinuola, O. A. and Francis, V. I. (2022): Representation of Social Actors and Action of Rape Reportage in Selected Nigerian Newspapers. Ebonyi Journal of Language and Literary Studies.

     Ayinuola, O. A. and Abdullahi, A. S. (2021): Language Use and Ideology in Ibiwari Ikiriko’s Oily Tears of the Delta and Stephen Kekeghe’s Rumbling Sky. Issues in Language and Literary Studies.

     Ayinuola, O.A. (2021): Linguistic Construction of Ideational Meaning in National Anthems of Selected African States. Jos Journal of the English Language.

    Ayinuola, O. A. and Francis, V. I. (2021): Discourse Representation of Significant Others in Selected Nigerian Universities’ Slogans. Himalayan Journals.

    Ayinuola, O. A. (2021): National Anthem: its Origin and Typologies in the African Context. Academia Letters.

    Ayinuola, O. A. (2020): Lexicalisation of Ideology in National Anthems of Selected African States. Issues in Language and Literary Studies.

   Ayinuola, O. A. (2020): Discourse Structure of Titles of National Anthems in Selected African States. Paper in English and Linguistics.

   Ayinuola, O. A. (2019): Linguistic Representations of Postproverbial Expressions among Selected Yoruba speakers: A Socio-Cultural Interpretation. Matatu Journal for African Culture and Society.

   Alo, M.A. and Ayinuola, O. A. (2017): Lexical and Discursive Construction of National Identities in Selected English-Medium National Anthems of African States. The African Symposium.

 

Wei Lu | Renewable Energy Technologies | Best Researcher Award

Prof Dr. Wei Lu | Renewable Energy Technologies | Best Researcher Award

Professor at Guangxi University, China.

Wei Lu is a distinguished Full Professor of energy and power engineering at Guangxi University, recognized for his expertise in renewable energy, energy system analysis, and optimization. He holds a B.S. in heat engineering, an M.S. in engineering thermophysics from South China University of Technology, and a Ph.D. in engineering thermophysics from Tianjin University. Wei Lu’s career includes a postdoctoral fellowship at Tsinghua University and accreditation as a Registered Utility Engineer by Chinese government departments. His research focuses on carbon dioxide capture, utilization, and storage, alongside innovations in thermodynamics and fluid mechanics. With over 131 publications, 24 patents, and leadership in numerous research projects, he remains dedicated to advancing engineering solutions and education.

Professional Profiles:

Education 🎓

Wei Lu is a Full Professor of energy and power engineering at Guangxi University. He earned his B.S. in heat engineering and M.S. in engineering thermophysics from South China University of Technology, followed by a Ph.D. in engineering thermophysics from Tianjin University. With a background as a postdoctoral fellow at Tsinghua University, he holds credentials as a Registered Utility Engineer accredited by Chinese government departments. His research focuses on renewable energy, energy system analysis and optimization, carbon dioxide capture, utilization and storage, and advancements in engineering education.

Professional Experience

Wei Lu has a distinguished professional trajectory marked by significant contributions in academia and research. Currently serving as a Full Professor of energy and power engineering at Guangxi University, he brings extensive expertise to his role. Wei Lu’s career began with a postdoctoral fellowship at Tsinghua University, where he further honed his skills in energy systems and engineering. He has actively engaged in consultancy and industry-sponsored projects, totaling 36 collaborations, showcasing his practical insights and application of theoretical knowledge. His professional journey underscores his commitment to advancing renewable energy technologies, optimizing energy systems, and pioneering solutions in carbon dioxide capture and storage.

Research Interest

Wei Lu’s research interests span across several critical areas in energy and engineering. He is particularly focused on renewable energy, aiming to enhance efficiency and sustainability in power generation. His expertise extends to energy system analysis and optimization, where he explores methods to improve the performance and reliability of energy systems. Additionally, Wei Lu is actively involved in research related to carbon dioxide capture, utilization, and storage (CCUS), addressing crucial environmental challenges through innovative engineering solutions. His research also encompasses engineering education, aiming to cultivate future generations of engineers equipped with the knowledge and skills necessary to tackle global energy issues effectively.

Award and Honors

Wei Lu has accumulated numerous awards and honors throughout his illustrious career. He was granted honorary admission to the PhD program for his outstanding academic achievements and has consistently ranked at the top in both Master’s and Bachelor’s programs for his exceptional academic performance. His participation and high placement in collegiate scientific olympiads have further underscored his proficiency in computer engineering. Wei Lu’s recognition as a Registered Utility Engineer by Chinese government departments highlights his expertise in energy engineering. His contributions to renewable energy, energy system analysis, and carbon dioxide capture have been widely acknowledged, solidifying his reputation as a leader in these critical research areas.

Research Skills

Wei Lu possesses a robust set of research skills honed through his extensive academic and professional journey. His expertise spans across thermodynamics, fluid mechanics and machinery, gas separation, renewable energy, and carbon dioxide capture, utilization, and storage. He has developed innovative approaches in optimal design theory for ejectors and novel methods utilizing thermal transpiration effect for applications in hydrogen storage and transportation. Wei Lu’s proficiency extends to conducting comprehensive energy system analysis and optimization, contributing significantly to advancements in engineering education. His research skills are underscored by his prolific publication record, extensive project involvement, and leadership in collaborative research initiatives with international engineers.

Publications

  1. Engineering a photothermal responsive cellulose carbon capture material for solar-driven CO2 desorption
    • Authors: Luo, W., Lu, W., Xiang, Q., Xu, C., He, H.
    • Year: 2024
  2. The Comprehensive Influence of the Nozzle Distance and Throat Length of Mixing Chamber on the Performance of Ejector
    • Authors: Tan, L., Chen, H., Ge, J., Lu, W.
    • Year: 2024
  3. Energy Efficiency Analysis of Multistage Knudsen Vacuum Pump
    • Authors: Ke, J., Meng, S., Su, X., Lu, W.
    • Year: 2024
  4. Effect of membrane thermal conductivity on ion current rectification in conical nanochannels under asymmetric temperature
    • Authors: Qiao, N., Li, Z., Zhang, Z., Lu, W., Li, C.
    • Year: 2023
    • Citations: 2
  5. Ion current rectification in asymmetric nanochannels: effects of nanochannel shape and surface charge
    • Authors: Qiao, N., Zhang, Z., Liu, Z., Lu, W., Li, C.
    • Year: 2023
    • Citations: 6
  6. Analysis on influencing factors and improvement of thermal efficiency of bagasse boilers based on performance test data
    • Authors: Mo, Q., Zhu, X., Deng, C., Chen, X., Lin, X.
    • Year: 2023
    • Citations: 6
  7. Influence of graphite/alumina on co-pyrolysis of Chlorella vulgaris and polypropylene for producing bio-oil
    • Authors: Chen, C., Zhao, J., Wei, Y., Bi, Y., Qiu, H.
    • Year: 2023
    • Citations: 3
  8. Tailoring and properties of a novel solar energy-triggered regenerative bionic fiber adsorbent for CO2 capture
    • Authors: Lu, W., Shi, X., Zhou, H., Wang, L., He, H.
    • Year: 2022
    • Citations: 13
  9. Analysis of Flow Rate and Pressure Characteristics for Multistage Thermal Transpiration Based Vacuum Pump
    • Authors: Qin, R., Meng, S., Wang, B., Lu, W.
    • Year: 2022
    • Citations: 1
  10. Modelling, Optimization, and Experimental Studies of Refrigeration CO2 Ejectors: A Review
    • Authors: Zheng, L., Zhang, Y., Hao, L., Deng, J., Lu, W.
    • Year: 2022
    • Citations: 2

 

 

Sumit Chakravarty | Ecology and Conservation | Best Researcher Award

Dr. Sumit Chakravarty | Ecology and Conservation | Best Researcher Award

Professor at Uttar Banga Krishi Viswavidyalaya, Pundibari Cooch Behar, West Bengal, India.

Dr. Sumit Chakravarty is a distinguished academic and researcher known for his expertise in forestry and environmental science. With nearly two decades of experience in the field, Dr. Chakravarty has made significant contributions to academia, research, and administration. He holds a Ph.D. in Agronomy, along with a B.Sc. in Agriculture (Honors) and an M.Sc. in Forestry. Currently serving as a Professor in the Department of Forestry at UBKV, Pundibari, Dr. Chakravarty has been instrumental in guiding doctoral and master’s students, with a track record of supervising numerous research projects. His research interests span a wide range of topics, including biomass mapping, carbon management, and biodiversity conservation in the Himalayan region. Dr. Chakravarty’s dedication to his field has earned him several prestigious awards and honors, including Honorary Fellowships from esteemed societies and the Scientist of the Year 2017 Award. Through his leadership roles, scholarly endeavors, and administrative responsibilities, Dr. Chakravarty continues to make valuable contributions to the field of forestry and environmental science.

Professional Profiles:

Education

Dr. Sumit Chakravarty holds a diverse educational background, including a Bachelor of Science in Agriculture (Honors), a Master of Science in Forestry, and a Doctorate in Agronomy. Additionally, he has qualified the ICAR Net (For), further enhancing his expertise in the field. This comprehensive educational journey has equipped him with a strong foundation in agricultural and forestry sciences, enabling him to excel in his career as a professor and researcher in the Department of Forestry at UBKV, Pundibari.

Professional Experience

Dr. Sumit Chakravarty boasts an extensive professional experience spanning over 19 years and 9 months. Throughout his career, he has served in various capacities, including as a Professor in the Department of Forestry at UBKV, Pundibari. Additionally, he has taken on leadership roles such as Head of the Department of Forestry, Deputy Registrar, and Placement Officer at UBKV. Dr. Chakravarty has also served as an Associate Director of Research at the Regional Research Station (Hill Zone) UBKV Kalimpong, showcasing his versatility and leadership skills in both academic and administrative domains.

Research Interest

Dr. Sumit Chakravarty’s research interests encompass a broad spectrum within the field of forestry and environmental science. He is particularly focused on areas such as biodiversity conservation, ecosystem management, carbon mapping, and carbon sink management in Himalayan ecosystems. His work delves into understanding the intricate dynamics of forest ecosystems and their role in mitigating climate change. Additionally, Dr. Chakravarty is interested in exploring the sustainable utilization of forest resources, agro-biodiversity conservation, and the development of innovative approaches for enhancing ecosystem resilience. Through his research endeavors, he aims to contribute to the advancement of knowledge and the development of sustainable practices for forest management and environmental conservation.

Award and Honors

Dr. Sumit Chakravarty has garnered numerous prestigious awards and honors throughout his career for his outstanding contributions to forestry and environmental science. These accolades include Honorary Fellowships by esteemed organizations such as the Society of Environment Science and the Society of Sciences in Dumka, India. Additionally, he has been recognized with an Honorary Fellowship by the East Himalayan Society for Spermatocyte Taxonomy (TaxoClub) at the Department of Botany, North Bengal University, Siliguri, India. One of his notable achievements is receiving the Scientist of the Year 2017 Award from the International Foundation for Environment and Ecology and the Confederation of Indian Universities in New Delhi. These honors underscore Dr. Chakravarty’s significant impact and dedication to advancing research in forestry and environmental science.

Research Skills

Dr. Sumit Chakravarty possesses a diverse set of research skills that have enabled him to excel in the field of forestry and environmental science. His expertise spans various areas, including biomass and carbon mapping, carbon sink management, and mitigation strategies. With a keen focus on interdisciplinary research, Dr. Chakravarty applies advanced methodologies and techniques to address complex environmental challenges. He has demonstrated proficiency in project management, successfully handling multiple external funded projects and overseeing their completion. Furthermore, Dr. Chakravarty is skilled in data analysis, interpretation, and dissemination, contributing valuable insights to the scientific community through peer-reviewed publications and presentations at national and international conferences. His commitment to continuous learning and collaboration underscores his effectiveness as a researcher and his dedication to advancing knowledge in forestry and environmental science.

Publications

  1. Mapping tree carbon density using Sentinel 2A sensor on Google Earth Engine in Darjeeling Himalayas: Implication for tree carbon management and climate change mitigation
    • Authors: Singh, M., Arshad, A., Bijlwan, A., … Shukla, G., Chakravarty, S.
    • Year: 2024
    • Citations: 0
  2. A Baseline Study of A’chik Homegardens in North-East India: Structure, Composition and Utilization
    • Authors: Marak, C.R., Marak, C.C., Sarkar, B.C., … Suresh, C.P., Chakravarty, S.
    • Year: 2024
    • Citations: 0
  3. Species richness, stand structure and carbon storage under an age chronosequence in Tectona grandis plantation at agricultural landscape of Indian Eastern Himalayan Foothill
    • Authors: Chettri, R., Tamang, M., Sarkar, B.C., … Bhat, J.A., Chakravarty, S.
    • Year: 2023
    • Citations: 0
  4. Prioritizing Tree-Based Systems for Optimizing Carbon Sink in the Indian Sub-Himalayan Region
    • Authors: Dey, T., Dinesha, S., Singh, M., … Shukla, G., Chakravarty, S.
    • Year: 2023
    • Citations: 1
  5. Editorial: Food security: sustainability and accessibility
    • Authors: Chakravarty, S., Nath, A.J., Shukla, G.
    • Year: 2023
    • Citations: 0
  6. Floristic diversity, and conservation status of large cardamom based traditional agroforestry system along an altitudinal gradient in the Darjeeling Himalaya, India
    • Authors: Vineeta, Sarkar, B.C., Tamang, M., … Nath, A.J., Chakravarty, S.
    • Year: 2022
    • Citations: 1
  7. Effects of plant growth regulators and growing media on propagation and field establishment of Stevia rebaudiana: a medicinal plant of commerce
    • Authors: Abha Manohar, K., Shukla, G., Roy, B., Chakravarty, S.
    • Year: 2022
    • Citations: 5
  8. Folk therapeutic uses of ethnomedicinal plants to cure gynecological disorders-A Meta-Analysis of West Bengal State in India
    • Authors: Vineeta, Shukla, G., Bhatt, J.A., Chakravarty, S.
    • Year: 2022
    • Citations: 0
  9. Biomass Production and Carbon Sequestration Potential of Different Agroforestry Systems in India: A Critical Review
    • Authors: Panwar, P., Mahalingappa, D.G., Kaushal, R., … Dutta Roy, A., Gurung, T.
    • Year: 2022
    • Citations: 23
  10. Traditional homegardens and ethnomedicinal plants: Insights from the Indian Sub-Himalayan region
    • Authors: Roy, M., Sarkar, B.C., Shukla, G., … Bhat, J.A., Chakravarty, S.
    • Year: 2022
    • Citations: 10