Heer Wang | Environmental and Sustainable Materials | Research Excellence Award

Dr. Heer Wang | Environmental and Sustainable Materials | Research Excellence Award 

Kunming University of Science and Technology | China

Dr. Heer Wang is an emerging scholar in applied economics whose research lies at the intersection of industrial transformation, climate change, labor mobility, and sustainable economic development. His work explores how evolving economic structures and environmental shocks shape household behavior, productivity, and long-term growth pathways, particularly within developing and transitional economies. By integrating rigorous microeconometric evaluation methods with rich empirical data, he contributes meaningful insights into how societies adapt to climate risks and structural shifts. A major strand of his research investigates the socioeconomic consequences of climate variability, especially extreme rainfall and its implications for rural livelihoods. His publications in leading journals such as Science of The Total Environment and Applied Economic Perspectives and Policy highlight how climate shocks influence labor mobility, household vulnerability, agricultural productivity, and consumption smoothing. His studies provide evidence-based perspectives that deepen the understanding of how rural communities manage risk, adjust labor allocation, and navigate long-term adaptation strategies under environmental uncertainty. Another important area of his work focuses on industrial structure upgrading and technological capability. Through theoretical and empirical analyses published in the Asian Journal of Technology Innovation, his research examines the depth and sophistication of structural transformation, revealing how technological capacity and sectoral linkages drive high-quality economic development. His work contributes to policy discussions on how emerging economies can enhance industrial competitiveness while maintaining sustainable growth. In addition to published work, he has developed several working papers addressing market integration, climate-induced behavioral responses, and the dynamics of agricultural adaptation. These studies reflect a consistent research theme: understanding how economic agents respond to shocks and incentives within rapidly evolving socioeconomic environments. His research portfolio is reinforced by participation in multiple interdisciplinary and national research projects funded by major institutions. These projects span topics such as digital economy development, fertility policy evaluation, labor mobility under technological disruption, climate risk prediction using artificial intelligence, and the economic implications of population aging. His role across these initiatives demonstrates strong capabilities in empirical modeling, policy analysis, and data-driven decision support. He brings expertise in microeconometrics, policy evaluation techniques, and quantitative analysis using software platforms such as Stata, R, and SPSS. His work contributes directly to academic knowledge, policymaking, and practical interventions aimed at improving resilience, enhancing productivity, and supporting sustainable economic progress. Overall, his research advances critical conversations on how economies can navigate structural change while adapting to environmental and demographic challenges.

Citation Metrics (Google Scholar)

100
   80
   60
   50
   40
   30
   20
   10
     5
     0

Citations
31

Documents
3

h-index
2

Citations

Documents

h-index


View Google Scholar Profile

Featured Publications

Tinggui Chen | Engineering | Research Excellence Award

Dr. Tinggui Chen | Engineering | Research Excellence Award 

Hefei University of Technology | China

Dr. Tinggui Chen is a highly accomplished researcher and academic in the field of mechanical engineering, with a specialized focus on acoustic metamaterials, phononic crystals, and advanced signal detection techniques. He completed his doctoral studies in mechanical engineering under the supervision of Prof. Dejie Yu at Hunan University, after earning both his bachelor’s degree from Hainan University and master’s degree from Hunan University. During his doctoral tenure, he developed innovative methodologies for enhancing acoustic sensing and signal detection using engineered metamaterials, establishing a strong foundation for his research career. Dr. Chen’s work is characterized by its combination of theoretical insight and experimental rigor, particularly in the design and application of gradient metamaterials, coiling-up structures, and space-time-modulated systems. His research has led to significant advancements in weak signal detection, directional acoustic sensing, and energy amplification in phononic systems. Notably, his studies on multi-frequency signal enhancement via gradient defect phononic crystals and space-time-modulated airborne acoustic circulators demonstrate his ability to bridge fundamental physics with practical engineering applications. He has actively contributed to the international scientific community through his extensive publication record, which includes articles in high-impact journals such as Measurement, Physical Review Applied, IEEE Transactions on Industrial Informatics, Mechanical Systems and Signal Processing, Journal of Sound and Vibration, IEEE Sensors Journal, Journal of Physics D: Applied Physics, and Physical Review B. These publications reflect his sustained focus on acoustic metamaterials, phononic crystal resonators, and novel techniques for signal demodulation and amplification, marking him as a leading expert in his domain. Dr. Chen’s research trajectory has also been enriched by international exposure and collaborative experiences. As a visiting scholar at EPFL under Prof. Romain Fleury, he explored cutting-edge experimental demonstrations in acoustic systems, further strengthening his expertise in wave manipulation and signal processing. Currently, as a postdoctoral researcher at Shanghai Jiao Tong University and an assistant professor at Hefei University of Technology, he continues to advance both fundamental and applied research, integrating computational modeling, experimental acoustics, and material design. His contributions have significant implications for industrial monitoring, structural health assessment, and the development of high-precision acoustic devices. With a strong focus on innovation, interdisciplinary collaboration, and practical application, Dr. Chen exemplifies the integration of scientific research and engineering solutions, positioning him as a rising leader in the field of mechanical engineering and acoustic metamaterials.

Profile: Orcid

Featured Publications

Chen, T., Zhu, M., Li, L., Wei, H., & Xia, B. (2026). Multi-frequency weak signals enhancement detection via gradient defect phononic crystals. Measurement, 261, 119933. https://doi.org/10.1016/j.measurement.2025.119933

Chen, T., Malléjac, M., Bi, C., Xia, B., & Fleury, R. (2025). Experimental demonstration of a space-time-modulated airborne acoustic circulator. Physical Review Applied, 23, 054017. https://doi.org/10.1103/PhysRevApplied.23.054017

Chen, T., Xia, B., Yu, D., & Bi, C. (2024). Robust enhanced acoustic sensing via gradient phononic crystals. Physics Letters A, 440, 129242. https://doi.org/10.1016/j.physleta.2023.129242

Chen, T., Wang, C., & Yu, D. (2022). Pressure amplification and directional acoustic sensing based on a gradient metamaterial coupled with space-coiling structure. Mechanical Systems and Signal Processing, 181, 109499. https://doi.org/10.1016/j.ymssp.2022.109499

Chen, T., & Yu, D. (2022). A novel method for enhanced demodulation of bearing fault signals based on acoustic metamaterials. IEEE Transactions on Industrial Informatics, 18(10), 6857–6864. https://doi.org/10.1109/tii.2022.3143161

Chen, T., Jiao, J., & Yu, D. (2022). Strongly coupled phononic crystals resonator with high energy density for acoustic enhancement and directional sensing. Journal of Sound and Vibration, 529, 116911. https://doi.org/10.1016/j.jsv.2022.116911

Qingguo Ma | Chemical Engineering | Excellence in Innovation Award

Dr. Qingguo Ma | Chemical Engineering | Excellence in Innovation Award

Taiyuan Institute of Technology | China

Dr. Qingguo Ma, an accomplished Associate Professor at the Taiyuan Institute of Technology, is a distinguished researcher specializing in advanced wastewater treatment, particularly in the catalytic degradation of formaldehyde. With a doctoral degree obtained from the School of Chemical Engineering and Technology at Nanjing University of Science and Technology, Dr. Ma has established a focused research trajectory in the development of innovative and efficient oxidation-based solutions for industrial pollutant removal. His work emphasizes the use of advanced oxidation processes employing oxidants such as hydrogen peroxide and monopersulfate in conjunction with highly efficient catalytic systems, including transition metal oxides and lanthanum-based composite metal oxide catalysts. Through this research, Dr. Ma has successfully achieved remarkable improvements in formaldehyde degradation efficiency, notably demonstrating degradation rates exceeding 90% under ambient conditions without the need for acidic, alkaline, photochemical, or electrocatalytic environments. This breakthrough shortens the oxidative degradation time by up to 12 times compared to conventional heterogeneous catalysts and provides a scalable pathway toward cost-effective and energy-efficient wastewater treatment technologies. Dr. Ma’s academic contributions are supported by a robust research profile, including five completed or ongoing research projects, eleven patents published or under application, and thirteen peer-reviewed publications indexed in SCI databases. His work has attracted growing scholarly attention, reflected in a developing citation index and engagement in two consultancy or industry-linked research initiatives. As a member of the Shanxi Provincial Society for Inspection and Testing, he actively contributes to the advancement of environmental monitoring and chemical engineering practices within the professional community. His research further explores the mechanistic pathways of formaldehyde oxidation, identifying both radical-driven and non-radical catalytic routes, which enhances scientific understanding and offers new design concepts for catalytic materials used in environmental remediation. Dr. Ma continues to expand collaborations and strengthen knowledge transfer through academic platforms, contributing meaningfully to scientific and societal progress in pollution control. With demonstrated excellence, innovation, and commitment to advancing sustainable wastewater treatment technologies, he exemplifies the qualities recognized by the Excellence in Innovation Award. Dr. Ma affirms the authenticity and accuracy of all information included in this application and acknowledges the guidelines and terms set forth for this nomination.

Profiles: Scopus | Orcid

Featured Publications

Ma, Q. (2024). Preparation of perovskite-type LaMnO₃ and its catalytic degradation of formaldehyde in wastewater. Molecules, 29(16). https://doi.org/10.3390/molecules29163822

Ma, Q. (2023). Removal of formaldehyde in water with low concentration of hydrogen peroxide catalyzed by lanthanum–silicon oxide composite. Desalination and Water Treatment, 29734. https://doi.org/10.5004/dwt.2023.29734

Ma, Q. (2023). The Baeyer–Villiger oxidation of cycloketones using hydrogen peroxide as an oxidant. Catalysts, 13(1). https://doi.org/10.3390/catal13010021

Ma, Q. (2022). Removal of formaldehyde from aqueous solution by hydrogen peroxide. Journal of Water Chemistry and Technology, 44(4). https://doi.org/10.3103/S1063455X22040099

Ma, Q. (2021). Enhancing propene selectivity in methanol and/or butene conversion by regulating channel systems over ZSM-5/ZSM-48 composite zeolites. Microporous and Mesoporous Materials, 310. https://doi.org/10.1016/j.micromeso.2020.110803

Ma, Q. (2015). Baeyer–Villiger oxidation of cyclic ketones with hydrogen peroxide catalyzed by silica–VTMO–OSO₃H. Journal of Porous Materials, 22(5). https://doi.org/10.1007/s10934-015-9918-8

Ma, Q. (2015). Silica/A153-SO₃H: An efficient catalyst for the Baeyer–Villiger oxidation of cyclic ketones with hydrogen peroxide. Comptes Rendus Chimie, 18(4). https://doi.org/10.1016/j.crci.2014.09.002

Ma, Q. (2015). Sn-bentonite-induced Baeyer–Villiger oxidation of 2-heptylcyclopentanone to δ-dodecalactone with aqueous hydrogen peroxide. Research on Chemical Intermediates, 41(5). https://doi.org/10.1007/s11164-013-1342-6

Sedighe Mirbolouk | Engineering | Editorial Board Member

Dr. Sedighe Mirbolouk | Engineering | Editorial Board Member 

Iran National Science Foundation | Iran

Dr. Sedighe Mirbolouk is a dedicated postdoctoral researcher and advanced machine learning specialist with strong expertise in communication systems, data science, and artificial intelligence. She is affiliated with the Iran National Science Foundation and has built a diverse research portfolio spanning deep learning, wireless communication optimization, image processing, and intelligent sensing systems. Her technical proficiency covers a wide spectrum of tools and programming environments, including Python, MATLAB, LATEX, and advanced libraries such as TensorFlow, PyTorch, Scikit-learn, NumPy, SciPy, Pandas, and Matplotlib. With a strong theoretical foundation in data telecommunication networks, convex optimization, communication theory, and signal and image processing, she integrates computational intelligence with modern communication challenges. In her role as a Postdoctoral Researcher (2024–2025) at the Iran National Science Foundation, Dr. Mirbolouk focuses on cutting-edge topics in graph learning and federated learning, particularly designing machine learning approaches for predictive beamforming in Reconfigurable Intelligent Surface (RIS)-aided Integrated Sensing and Communication (ISAC) systems. Her work aims to improve efficiency, adaptability, and intelligence in next-generation wireless communication networks. Previously, she served as a Visiting Researcher (2022) at the University of Oulu in Finland, where she explored advanced deep reinforcement learning methods to enhance ISAC designs. These research experiences have positioned her at the frontier of combining AI with communication technologies. During her doctoral studies at the University of Urmia (2018–2021), Dr. Mirbolouk contributed significantly to satellite–UAV cooperative network optimization. She developed innovative solutions involving UAV selection and power allocation for CoMP-NOMA transmissions, introducing both Lagrangian and heuristic algorithms that advanced energy-efficient communication frameworks. Alongside communications research, she proposed image processing solutions such as fuzzy histogram weighting methods and contrast enhancement techniques. Her academic involvement includes teaching core engineering subjects—Digital Communication, Probability and Statistics, and Signals and Systems—and assisting courses on Stochastic Processes and Digital Signal Processing. Her work at the National Elite Foundation (2020–2022) expanded her portfolio into biomedical machine learning applications, where she designed systems for automatic breast cancer detection using histopathology images and cardiac arrhythmia recognition using ECG signals through deep learning approaches. Dr. Mirbolouk holds a Ph.D. in Electrical Engineering, with earlier B.Sc. and M.Sc. degrees from the University of Guilan, where she studied SAR radar Doppler ambiguity for moving targets. Her scholarly contributions include high-impact publications in journals such as IEEE Transactions on Vehicular Technology, Physical Communication, and Multimedia Tools and Applications. Collectively, her research reflects an outstanding integration of machine learning, optimization, sensing, and communication technologies.

Profile: Google Scholar

Featured Publications

Mirbolouk, S., Valizadeh, M., Amirani, M. C., & Ali, S. (2022). Relay selection and power allocation for energy efficiency maximization in hybrid satellite-UAV networks with CoMP-NOMA transmission. IEEE Transactions on Vehicular Technology, 71(5), 5087–5100.

Mirbolouk, S., Valizadeh, M., Amirani, M. C., & Choukali, M. A. (2021). A fuzzy histogram weighting method for efficient image contrast enhancement. Multimedia Tools and Applications, 80(2), 2221–2241.

Mirbolouk, S., Choukali, M. A., Valizadeh, M., & Amirani, M. C. (2020). Relay selection for CoMP-NOMA transmission in satellite and UAV cooperative networks. 2020 28th Iranian Conference on Electrical Engineering (ICEE), 1–5.

Choukali, M. A., Valizadeh, M., Amirani, M. C., & Mirbolouk, S. (2023). A desired histogram estimation accompanied with an exact histogram matching method for image contrast enhancement. Multimedia Tools and Applications, 82(18), 28345–28365.

Hussein, A. A., Valizadeh, M., Amirani, M. C., & Mirbolouk, S. (2025). Breast lesion classification via colorized mammograms and transfer learning in a novel CAD framework. Scientific Reports, 15(1), 25071.

Choukali, M. A., Mirbolouk, S., Valizadeh, M., & Amirani, M. C. (2024). Deep contextual bandits-based energy-efficient beamforming for integrated sensing and communication. Physical Communication, 68, 102576.

Minglu Zhang | Environmental Science | Best Researcher Award

Prof. Dr. Minglu Zhang | Environmental Science | Best Researcher Award

Beijing University of Technology and Business | China

Dr. Minglu Zhang is currently a professor in the Department of Environmental Engineering at Beijing Technology and Business University, having previously served as associate professor (2015–2019) and lecturer (2012–2015) in the same discipline. After completing a postdoctoral appointment in the School of Environment at Tsinghua University (2010–2012) and earlier research experience at the University of California, Irvine (2008–2010), he has built a distinguished career in environmental microbiology and water systems research. His primary research interests encompass microbial ecology and molecular microbiology in water and solid waste systems, with a special focus on antibiotic-resistant bacteria and resistance genes in drinking water systems. Dr. Zhang has led and contributed to several major national research projects. For example, he is the principal investigator on the “Typing and Traceability System for VBNC State Pathogens of Major Digestive Tract at Ports” (2022–2025, National Key R&D Program), as well as on the “Technology and Equipment Development for Monitoring, Early Warning and Purification of Malodorous Gas Emissions under Classified Collection of Domestic Waste” (2020–2024, National Key R&D Program). Earlier, he also led work on the distribution and migration of antibiotic resistance genes at multi-phase interfaces in drinking water distribution systems (2015–2017, National Natural Science Foundation of China). To date, Dr. Zhang has authored or co-authored numerous peer-reviewed scientific publications. According to his ResearchGate profile, his publication count is 79, with more than 1,300 citations. His academic impact is further reflected by his h-index, which is listed as 5 on the SciSpace author profile. Among his representative works are: “Metagenomics analysis of antibiotic resistance genes, bacterial community and virulence factor genes of fouled filters and effluents from household water purifiers in drinking water” (Science of the Total Environment, 2023); “Global transcriptional analysis for molecular responses of Alicyclobacillus acidoterrestris spores in drinking water after low- and medium-pressure UV irradiation” (Journal of Hazardous Materials, 2024); and “Highly efficient degradation of ethanol, acetaldehyde, and ethyl acetate removal by bio-trickling filter reactors” (Process Safety and Environmental Protection, 2024). These works illustrate how he combines high-throughput molecular methods (e.g. metagenomics, transcriptional profiling) with applied engineering systems (e.g. drinking water treatment, gas emission purification) to address critical environmental microbiology challenges. Over the course of his career, Dr. Zhang has established himself as a leading scholar at the intersection of environmental engineering and microbial molecular ecology. His work not only advances fundamental understanding of microbial community dynamics and resistance gene behavior in engineered systems, but also yields practical solutions for water quality protection, public health, and waste management. His contributions are broadly recognized in China’s environmental research community and are increasingly cited in the international literature.

Profiles: Orcid

Featured Publications

Zhang, M., et al. (2025). Adsorption and desorption characteristics of nano-metal-modified zeolite for removal of oxygenated volatile organic compounds. Coatings, 15(10), 1206. https://doi.org/10.3390/coatings15101206

Jiang, J., Zhang, Y., Cui, R., Ren, L., Zhang, M., & Wang, Y. (2023). Effects of two different proportions of microbial formulations on microbial communities in kitchen waste composting. Microorganisms, 11(10), 2605. https://doi.org/10.3390/microorganisms11102605

Wang, Y., Cui, R., Jiang, H., Bai, M., Zhang, M., & Ren, L. (2022). Removal of hydrogen sulfide and ammonia using a biotrickling filter packed with modified composite filler. Processes, 10(10), 2016. https://doi.org/10.3390/pr10102016

Xu, S., Zhang, L., Lin, K., Bai, M., Wang, Y., Xu, M., Zhang, M., Zhang, C., Shi, Y., & Zhou, H. (2021). Effects of light and water disturbance on the growth of Microcystis aeruginosa and the release of algal toxins. Water Environment Research, 93, 2958–2970. https://doi.org/10.1002/wer.1644

JosephIkechukwu Nwachukwu | Pollution Control Technology | Best Researcher Award

Dr.JosephIkechukwu Nwachukwu | Pollution Control Technology | Best Researcher Award

Federal University of Technology, Owerri | Nigeria

Profile: orcid

Dr. Joseph Ikechukwu Nwachukwu is an early career environmental scientist and Senior Lecturer at the Federal University of Technology, Owerri (FUTO), Nigeria, specializing in climate adaptation, water quality, contaminant exposure, and geospatial analysis. Holding a PhD in Environmental Sciences from Manchester Metropolitan University, his doctoral work employed geospatial exposure pathways to chemical pollutants in soils, water, and sediments around Owerri. His research spans human exposure to heavy metals in food crops, groundwater nitrification in urban contexts, and innovative training in geospatial intelligence for environmental monitoring. Beyond research, Dr. Nwachukwu has extensive experience teaching courses in environmental chemistry, hydrology, impact assessment, and geospatial techniques, and he supervises undergraduate and graduate research projects. He serves as Deputy Director of the Centre for Waste to Wealth Research & Development at FUTO, and as Postgraduate Coordinator in his department, where he promotes interdisciplinary, data-driven approaches to environmental challenges in Sub-Saharan Africa. His awards include the TETFund Fellowship for doctoral study, and national grants for developing nanoadsorbents for industrial wastewater remediation. Driven by a commitment to integrate science and policy, Dr. Nwachukwu is consolidating his profile toward leadership in environmental resilience, contamination mitigation, and sustainable water resource governance.

Featured publications

Nwachukwu, J. I., et al. (2024). Assessment of groundwater contamination by effluent discharged PAH at NNPC Depot in Osisioma, Nigeria. Waste Management Bulletin, 2(1), 229–238.

Nwachukwu, J. I., et al. (2022). Assessment of human exposure to food crops contaminated with lead and cadmium in Owerri, South-eastern Nigeria. Journal of Trace Elements and Minerals.

Nwachukwu, J. I., et al. (2019, August). Urbanization impacts on groundwater nitrification and health: A case study of Owerri, Southeast Nigeria. Paper presented at the 29th Annual Goldschmidt Conference, Barcelona, Spain.

William Gardner | Engineering | Best Researcher Award

Prof. William Gardner | Engineering | Best Researcher Award 

University of California, Davis | United States

Dr. William A. Gardner is an esteemed scholar and pioneer in statistical signal processing, particularly renowned for his foundational contributions to cyclostationary signal processing theory and methods. His postsecondary education began with a Certificate in Aircraft Radio Repair (1961) at Keesler Air Force Base, followed by coursework in electronics and electrical engineering at Foothill College and Stanford University, where he earned his M.S. in Electrical Engineering (1967). He pursued further graduate studies at MIT and Bell Labs, and earned his Ph.D. in Electrical Engineering from the University of Massachusetts Amherst (1972). Dr. Gardner joined the University of California, Davis in 1972, where he advanced to Professor VII before becoming Professor Emeritus in 2001. Over his career, he supervised numerous M.S. and Ph.D. theses focused on statistical signal processing, especially the exploitation of cyclostationarity in communications and signals intelligence. In 1986, Dr. Gardner founded Statistical Signal Processing, Inc. (SSPI), a private research firm dedicated to advanced algorithm development for radio reconnaissance, signals intelligence, and cellular communications. The firm, which operated for 25 years, licensed its technologies to major corporations including Apple Inc. and Lockheed Martin. Post-retirement, he continued research collaborations—most notably with Prof. Antonio Napolitano—on advanced statistical cyclicity and nonstationary signal behavior. His recent work has expanded into electromagnetic modeling of cosmic plasma and laboratory-confined plasma, supporting paradigm-challenging efforts such as the Plasma Universe, Thunderbolts Project, and the SAFIRE Project, all aimed at redefining astrophysical theory and clean energy generation. Dr. Gardner is the author of four influential books, including Introduction to Random Processes and Statistical Spectral Analysis, and editor of Cyclostationarity in Communications and Signal Processing. He has contributed chapters to five other books, authored or co-authored over 110 peer-reviewed journal papers, and holds 15 U.S. patents. His academic impact is reflected in a citation count exceeding 7489, an h-index of 33, and continued recognition for shaping the theoretical underpinnings of modern signal processing. He has delivered invited lectures globally and remains a thought leader across academia, industry, and emerging scientific paradigms.

Profiles:  Scopus | Orcid | Google Scholar

Featured Publications

Gardner, W. A. (2002). Exploitation of spectral redundancy in cyclostationary signals. IEEE Signal Processing Magazine, 8(2), 14–36.

Gardner, W. A. (1990). Introduction to random processes: With applications to signals and systems. McGraw-Hill.

Gardner, W. A., Napolitano, A., & Paura, L. (2006). Cyclostationarity: Half a century of research. Signal Processing, 86(4), 639–697.

Gardner, W. A., & Robinson, E. A. (1989). Statistical spectral analysis—A nonprobabilistic theory. Prentice-Hall.

Gardner, W. A. (1994). Cyclostationarity in communications and signal processing. IEEE Press.

Gardner, W. A. (2002). Signal interception: A unifying theoretical framework for feature detection. IEEE Transactions on Communications, 36(8), 897–906.

Gardner, W. A., Brown, W., & Chen, C. K. (1987). Spectral correlation of modulated signals: Part II—Digital modulation. IEEE Transactions on Communications, 35(6), 595–601.

Gardner, W. A., & Franks, L. E. (1975). Characterization of cyclostationary random signal processes. IEEE Transactions on Information Theory, 21(1), 4–14.

Gardner, W. A., & Spooner, C. M. (1992). Signal interception: Performance advantages of cyclic-feature detectors. IEEE Transactions on Communications, 40(1), 149–159.

Junxia Yu | Environmental Science | Best Researcher Award | 13493

Prof. Junxia Yu | Environmental Science | Best Researcher Award

Prof. Junxia Yu, Wuhan Institute of Technology, China

Prof. Jun-xia Yu is a distinguished researcher at the Wuhan Institute of Technology, China, affiliated with the Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry. She also serves at the Hubei Novel Reactor & Green Chemical Technology Key Laboratory and the Key Laboratory for Green Chemical Process of the Ministry of Education. Her work focuses on sustainable chemical engineering, green processes, and advanced biomass-based materials. Additionally, she is affiliated with the Hubei Three Gorges Laboratory in Yichang. Prof. Yu is based at No. 693 Xiongchu Avenue, Hongshan District, Wuhan, Hubei 430074, China.

Author Profile

Scopus

🌱 Early Academic Pursuits

Prof. Jun-xia Yu’s journey in the world of chemistry and environmental engineering began with a deep-rooted passion for scientific discovery and sustainable development. She pursued her undergraduate and postgraduate studies in chemical engineering, laying a strong foundation in process engineering, catalysis, and materials science. Her early academic years were marked by a keen interest in the transformation of biomass and the development of environmentally friendly technologies. Through rigorous training and academic excellence, she developed the skills necessary to lead advanced research in green chemical processes, eventually earning her position as a thought leader in her field.

🧪 Professional Endeavors

Currently, Prof. Jun-xia Yu is a senior faculty member at the Wuhan Institute of Technology, China. She holds a prestigious position at the School of Chemistry and Environmental Engineering and is actively involved with several key national and regional laboratories, including:

  • Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry

  • Hubei Novel Reactor & Green Chemical Technology Key Laboratory

  • Key Laboratory for Green Chemical Process of Ministry of Education

  • Hubei Three Gorges Laboratory, Yichang

Her work seamlessly integrates teaching, mentoring, and leading multidisciplinary research projects. Prof. Yu also plays a crucial role in establishing collaborative efforts between academic institutions and industry stakeholders to promote innovation in chemical technology.

🔬 Contributions and Research Focus

Prof. Yu’s research is at the forefront of green chemistry, particularly focusing on the conversion of biomasshigh-value energy and environmental materials. Her projects aim to develop novel catalysts, reactors, and processes that minimize environmental impact while maximizing efficiency.

Key areas of research include:

  • Development of biomass-based materials for environmental remediation

  • Design of green catalytic processes for energy conversion

  • Innovation in reactor technology for cleaner chemical production

  • Utilization of renewable resources in place of fossil-based inputs

Her contributions are documented in numerous high-impact scientific publications, patents, and conference presentations that continue to influence emerging trends in sustainable chemical processes.

🏆 Accolades and Recognition

Prof. Jun-xia Yu’s outstanding work has earned her recognition both nationally and internationally. She is a respected figure within the Ministry of Education’s green chemistry initiatives and regularly serves as an evaluator for various research programs. Her lab has received government funding and accolades for excellence in applied chemical research and innovation.

She is often invited to speak at global symposia and serves as a peer reviewer for reputable journals in chemistry, environmental engineering, and material sciences. Her mentorship of young researchers and postgraduates has also been widely praised.

🌍 Impact and Influence

Prof. Yu’s scientific contributions have had a significant impact on advancing China’s agenda for carbon neutrality, environmental sustainability, and clean energy development. By innovating processes that utilize renewable biomass, she helps reduce reliance on petroleum-based resources, aligning research outputs with broader climate and environmental goals.

Her collaborations with industries and government bodies have also resulted in real-world applications of laboratory research, making her work influential beyond academia. Many of her former students now hold key positions in industry, academia, and policy-making, extending her influenceo the next generation of green chemists.

💫 Legacy and Future Contributions

Prof. Jun-xia Yu’s legacy is one of scientific integrity, environmental consciousness, and tireless dedication to the advancement of green technologies. As global challenges like climate change and pollution intensify, her work serves as a beacon of innovation for sustainable development.

Looking ahead, she aims to:

  • Expand international collaborations with global research institutes

  • Explore next-generation biomass technologies for zero-emission applications

  • Train and empower a new wave of scientists dedicated to green chemistry

Her strategic role at the Hubei Three Gorges Laboratory also positions her to influence large-scale research infrastructure and regional innovation hubs focused on sustainability and energy transitions.

✍️ Publication Top Notes


📘Nano architectonics via in situ growth of MIL-101(Fe) on modified sugarcane bagasse for selective capture of glyphosate from aqueous solution

Journal: Environmental Chemical Engineering

Year: 2025


 

Hou-Yun Yang | Environmental Science | Best Researcher Award

Assoc Prof Dr. Hou-Yun Yang | Environmental Science | Best Researcher Award 

 

Assoc Prof Dr. Hou-Yun Yang, Anhui Jianzhu University, China

Assoc. Prof. Dr. Hou-Yun Yang is a distinguished faculty member at Anhui Jianzhu University, China, specializing in engineering and sustainable energy systems. Renowned for his contributions to thermal science and renewable energy research, Dr. Yang plays a pivotal role in guiding emerging scholars and advancing practical solutions in green energy technologies. His mentorship and academic leadership continue to inspire innovation and academic excellence in the field.

Author Profile

Orcid

🌱 Early Academic Pursuits

Xuefeng Jiang began his academic journey with a deep-rooted interest in science and innovation. His early education laid a strong foundation in engineering and the natural sciences, with a particular curiosity for sustainable and renewable technologies. This early interest eventually guided him to pursue higher education at Liaoning Technical University, one of China’s notable institutions for technical education and research. As a Master’s candidate starting in 2023, Jiang chose to specialize in renewable energy systems, aligning his academic trajectory with one of the world’s most urgent challenges—sustainable development and climate resilience. His academic record demonstrates both diligence and intellectual curiosity, making him a standout among his peers.

🛠️ Professional Endeavors

Although currently a student, Xuefeng Jiang has already begun to establish a solid professional identity through academic research and innovation. His focus lies in renewable energy, with a particular emphasis on thermal storage systems and energy efficiency. His work bridges theoretical research with practical engineering applications, showing a mature understanding of how academic inquiry can translate into real-world impact.

Jiang’s most notable contribution to date is his work on phase change energy storage systems. His publication in the prestigious journal Applied Thermal Engineering reflects the level of professional maturity he has already achieved. His research paper titled, “Thermal performance analysis of a double-helix heat tube phase change energy storage system”, illustrates an innovative and technically sound approach to improving energy efficiency in storage systems—an essential area for future smart energy infrastructure.

🔬 Research Contributions and Focus

Jiang’s research primarily revolves around thermal energy storage, phase change materials (PCMs), and sustainable energy conversion systems. The core of his work focuses on optimizing the heat transfer performance within energy storage devices using advanced designs like double-helix heat tubes. His work offers a new design paradigm for engineers and scientists working on clean and efficient thermal energy storage systems.

His landmark publication not only contributes to the academic body of knowledge but also provides a roadmap for industry practitioners to enhance renewable energy storage solutions. The citation DOI https://doi.org/10.1016/j.applthermaleng.2025.127208 stands as proof of his credibility and growing impact in the research community.

🏆 Accolades and Recognition

Though early in his career, Xuefeng Jiang’s work has already received academic validation through peer-reviewed publication in a high-impact journal indexed in SCI and Scopus. His contribution has been acknowledged by professionals and academics alike, particularly those working in thermal science, sustainable design, and renewable energy systems.

His dedication, innovation, and technical accuracy have positioned him as a strong contender for the “Best Researcher Award”, a recognition he seeks not for personal glory, but as a testament to the transformative potential of renewable technologies.

🌍 Impact and Influence

Jiang’s work addresses pressing global issues, including climate change, energy crisis, and sustainable infrastructure. By focusing on enhancing the efficiency of energy storage systems, he contributes to making renewable energy sources more viable, scalable, and adaptable. His research has the potential to influence policy formulation, industrial design, and future academic curricula in the fields of green engineering and energy management.

Moreover, as a young researcher, he inspires fellow students and junior colleagues to take up meaningful, solution-oriented research projects. His publication, mentorship under esteemed professors, and growing research footprint contribute positively to China’s and the world’s sustainable development goals.

🌟 Legacy and Future Contributions

Xuefeng Jiang envisions a future where energy systems are clean, cost-efficient, and universally accessible. As he continues his academic pursuits, he plans to expand his work into multi-phase heat transfer systems, smart thermal grids, and AI-assisted energy optimization. His ambition is not only to publish more but to collaborate with industries, policy-makers, and academic institutions globally.

He also aims to file patents, co-author books, and eventually mentor future generations of energy engineers. With his growing profile on platforms like ORCID, Jiang is gradually carving out a space for himself in the international research community.

📖Publication Top Notes


📘 Systematic study of microplastics on methane production in anaerobic digestion: Performance and microbial response

Contributors: Chen-Yu Li; Li Yu; Xin He; Xian-Huai Huang; Wei-Hua Li; Hou-Yun Yang; Tong-Zhan Xue; Jun Liu; Zhen Yan; Ying Hui Ong
Journal:  Environmental Chemical Engineering
Year: 2025

📘 Nutrient Removal and Bioelectricity Generation in a Constructed Wetland-Microbial Fuel Cell: Performance of Pyrite Anode Materials
ContributorsShu Feng; Pei Xu; Jun-Cheng Han; Hou-Yun Yang; Xian-Huai Huang; Li Yu; Jun Liu; Bin-Bin Zhang; Wei-Hua Li
Journal: Environmental Engineering Science
Year: 2025

📘 A modified two-point titration method for the determination of volatile fatty acids in anaerobic systems

ContributorsZhe-Xuan Mu; Chuan-Shu He; Jian-Kai Jiang; Jie Zhang; Hou-Yun Yang; Yang Mu
Journal: Chemosphere
Year: 2018

Xiang Li | Environmental Science | Best Researcher Award | 13461

Prof Dr. Xiang Li | Environmental Science | Best Researcher Award 

Prof Dr. Xiang Li, Fudan University, China

Prof. Dr. Xiang Li is a distinguished Professor in the Department of Environmental Science and Engineering at Fudan University, Shanghai. With deep expertise in exhaled volatile organic compounds (VOCs), his pioneering research integrates breathomics, multi-omics analysis, and AI-based diagnostics to enable non-invasive early detection of diseases such as colorectal, gastric, and brain cancers. Prof. Li has led over 20 research projects, including several major grants from the National Natural Science Foundation of China, and has collaborated internationally with institutions like TROPOS and the University of Waterloo. His work bridges environmental health, analytical chemistry, and public health innovation, making significant strides in the field of precision diagnostics and air pollution impact assessment.

Author Profile

Google Scholar

🎓 Early Academic Pursuits

Prof. Dr. Xiang Li began his academic journey with a keen interest in environmental chemistry and health science. His early training laid a robust foundation in analytical chemistry and environmental sciences, which later expanded into interdisciplinary research addressing public health challenges. A pivotal chapter in his formative years was his post-doctoral fellowship at the University of Waterloo, Canada (2008–2009), where he worked under Prof. Janusz Pawliszyn, a world-renowned expert in sampling and analytical techniques. This experience not only honed his technical expertise but also shaped his future research direction toward human exposure science and non-invasive diagnostics.

👨‍🔬 Professional Endeavors

Prof. Xiang Li has been a central figure at Fudan University’s Department of Environmental Science and Engineering since 2006, ascending from Assistant Professor to Full Professor. His academic career is marked by consistent progression and international collaboration, including a visiting scholar stint at TROPOS, Germany (2014–2015), where he worked with Prof. Hartmut Herrmann on atmospheric chemistry.

Since 2016, he has held the position of Full Professor, leading a vibrant research group and mentoring graduate students, postdoctoral researchers, and early-career scholars. Over the years, he has secured more than 20 research projects, amassing over 15 million RMB in research funding, with sustained support from the National Natural Science Foundation of China (NSFC).

🔬 Contributions and Research Focus

At the core of Prof. Li’s research lies the application of exhaled volatile organic compounds (VOCs) in disease diagnostics, particularly in cancer screening. He has developed a high-fidelity breath sampling system and a high-resolution VOC detection platform, allowing for precise identification of metabolic changes associated with various diseases.

His integrated approach combines:

  • 🧪 Direct VOC observation

  • 🧬 Multi-omics analysis

  • 🤖 AI-driven modeling for multi-disease classification

His goal is to develop non-invasive, scalable, and clinically reliable diagnostic tools. These tools have proven especially valuable in early detection of diseases like colorectal, gastric, and brain cancers.

Additionally, Prof. Li’s group actively studies:

  • 🌍 Extreme climate events

  • 🔄 Environmental carbon cycling

  • ⚗️ Environmental analytical chemistry

  • ⚠️ Emerging pollutants

  • 🌫️ Air organic pollution exposure and health impacts

This interdisciplinary scope reinforces his ability to bridge environmental science and public health, a rare and valuable combination.

🏅 Accolades and Recognition

Prof. Li’s prolific research output and innovation have earned him recognition at both national and international levels. His successful acquisition of key NSFC grants, including international cooperative projects (e.g., Sino-German studies on ozone and PM interactions), highlights his leadership in global scientific networks.

Select prestigious projects include:

  • 🌬️ NSFC Key Project on Atmospheric Ozone & PM Regulation (2021–2023)

  • 💨 NSFC Project on Human Exhaled VOC Response to Air Pollution (2023–2026)

  • 🔥 NSFC Project on Oxidative Potential of Atmospheric Particles (2019–2022)

These projects underscore his ability to lead high-impact research teams that address urgent environmental and health-related challenges.

🌍 Impact and Influence

Prof. Li’s work has profound societal implications, especially in non-invasive disease diagnostics and air pollution exposure analysis. His contributions are helping to:

  • 💡 Advance early detection techniques for life-threatening diseases

  • 🧑‍⚕️ Reduce healthcare burden through preventive diagnostics

  • 🌱 Promote sustainable development by linking air quality and human health

  • 🧭 Inform policy decisions regarding environmental health risks

Moreover, by incorporating AI algorithms, he is at the forefront of next-generation precision medicine, moving beyond traditional boundaries of environmental science.

🧬 Legacy and Future Contributions

Prof. Dr. Xiang Li’s scientific legacy is already evident in the real-world applicability of his research. He is building a framework for large-scale clinical adoption of breath biopsy—a field that has the potential to revolutionize public health screening.

Looking ahead, his team is expected to:

  • Expand the breathomics database for multiple diseases

  • Enhance AI-based diagnostic models using global clinical datasets

  • Collaborate across countries for standardizing breath tests

  • Advocate for public health policies rooted in scientific evidence

✍️ Publication Top Notes


📘Pinning a complex dynamical network to its equilibrium

Author: X Li, X Wang, G Chen
Journal: IEEE Transactions on Circuits and Systems
Year: 2004

📘A Facile One-Pot Synthesis of a Two-Dimensional MoS2/Bi2S3 Composite Theranostic Nanosystem for Multi-Modality Tumor Imaging and Therapy.
Author: S Wang, X Li, Y Chen, X Cai, H Yao, W Gao, Y Zheng, X An, J Shi, …
Journal: Advanced Materials
Year: 2015

📘Spatial epidemiology of networked metapopulation: An overview

Author: L Wang, X Li
Journal: Chinese Science Bulletin
Year: 2014