Shimelash Molla Kassaye | Environmental Science | Editorial Board Member

Dr. Shimelash Molla Kassaye | Environmental Science | Editorial Board Member

Mattu University | Ethiopia

Dr. Shimelash Molla Kassaye is a highly dedicated scholar and researcher specializing in Hydrology and Water Resources Management, with an extensive academic background and a strong record of scientific contributions in the field of environmental and water sciences. He currently serves as an Assistant Professor at Mattu University, Ethiopia, where he continues to advance research and teaching in hydrology, climate change, and watershed management. His professional journey reflects consistent excellence and commitment to solving pressing environmental and water-related challenges affecting the African continent. Dr. Kassaye earned his Ph.D. in Water Management (Hydrology and Water Resources Management) from the African Centre of Excellence in Water Management (ACEWM) at Addis Ababa University in 2024. His doctoral research, titled “Evaluating the Hydrological Dynamics under Land Use/Cover and Climate Change in the Baro River Basin, Ethiopia,” focused on understanding the complex interactions between climate variability, land use change, and hydrological responses in one of Ethiopia’s key river basins. His research offers vital insights into sustainable water resource management and policy planning under changing climatic conditions. Prior to his Ph.D., he obtained an M.Sc. in Hydraulic Engineering from Jimma University in 2017 with an outstanding CGPA of 3.88/4.00 and a B.Sc. in Hydraulic and Water Resources Engineering from Arbaminch University in 2011. His professional experience spans over a decade of teaching, research, and academic service. Before assuming his current position, Dr. Kassaye worked as a Researcher and Lecturer at Mattu University (2014–2021) and as a Graduate Assistant at Arbaminch University (2012–2014). Through these roles, he has contributed significantly to the training of young engineers and scientists, supervising research projects, and integrating innovative technologies into water resource education and management practices. Dr. Kassaye’s research expertise covers a broad range of topics, including hydrologic modeling, climate change and variability, drought monitoring and prediction, integrated watershed management, natural resource management, and hydrometeorological risk assessment. His multidisciplinary approach, combining remote sensing, geospatial analysis, and hydrological modeling, enables comprehensive assessments of environmental systems under stress from both natural and anthropogenic factors. He has published multiple peer-reviewed scientific papers in high-impact international journals such as Water, Environmental Earth Sciences, Environmental Systems Research, and Earth. His publications have explored critical themes such as the sensitivity of meteorological dynamics to catchment variability, the integrated impact of land use and topography on hydrological extremes, and the quantification of climate change effects on streamflow dynamics. His academic excellence, combined with practical expertise and a strong publication record, positions him as a leading early-career researcher contributing to Ethiopia’s and Africa’s sustainable water resource management efforts. His dedication to advancing hydrological science underscores his commitment to building climate resilience and fostering sustainable development in vulnerable regions.

Profiles: Orcid | Google Scholar

Featured Publications

Kassaye, S. M., Tadesse, T., Tegegne, G., & Hordofa, A. T. (2024). Quantifying the climate change impacts on the magnitude and timing of hydrological extremes in the Baro River Basin, Ethiopia. Environmental Systems Research, 13(1), 1–15.

Belay, H., Melesse, A. M., Tegegne, G., & Kassaye, S. M. (2025). Flood inundation mapping using the Google Earth Engine and HEC-RAS under land use/land cover and climate changes in the Gumara Watershed, Upper Blue Nile Basin, Ethiopia. Remote Sensing, 17(7), 1283.

Malede, D. A., Elumalai, V., Andualem, T. G., Mekonnen, Y. G., Yibeltal, M., Kassaye, S. M., & others. (2025). Understanding flood and drought extremes under a changing climate in the Blue Nile Basin: A review. Environmental and Sustainability Indicators, 100638.

Kassaye, S. M., Tadesse, T., & Tegegne, G. (2024). Quantifying the climate change impacts on the magnitude and timing of hydrological extremes in the Baro River Basin, Ethiopia. Environmental Systems Research, 13(2).

Kassaye, S. M., Tadesse, T., Tegegne, G., Hordofa, A. T., & Malede, D. A. (2024). Relative and combined impacts of climate and land use/cover change for the streamflow variability in the Baro River Basin (BRB). Earth, 5(2), 149–168.

Kassaye, S. M., Tadesse, T., Tegegne, G., & Tadesse, K. E. (2022). The sensitivity of meteorological dynamics to the variability in catchment characteristics. Water, 14(22), 3776.

Kassaye, S. M., Tadesse, T., Tegegne, G., & Hordofa, A. T. (2024). Integrated impact of land use/cover and topography on hydrological extremes in the Baro River Basin. Environmental Earth Sciences, 83(2), 49.

Kassaye, S. M., Ebissa, T. N., Gutema, B. G., & Gurmesa, G. T. (2020). Site selection and design of mini hydropower plant for rural electrification in Keber River. American Journal of Electrical Power and Energy Systems, 9(5), 82–96.

Ebissa, T. N., Kassaye, S. M., & Malede, D. A. (2024). Hydrological response to climate change in Baro Basin, Ethiopia, using representative concentration pathway scenarios. Environmental Systems Research, 13(1), 42.

Waheed, A., Kousar, S., Khan, M. I., & Fischer, T. B. (2025). Environmental and Sustainability Indicators. Environmental and Sustainability Indicators.

Junxia Yu | Environmental Science | Best Researcher Award | 13493

Prof. Junxia Yu | Environmental Science | Best Researcher Award

Prof. Junxia Yu, Wuhan Institute of Technology, China

Prof. Jun-xia Yu is a distinguished researcher at the Wuhan Institute of Technology, China, affiliated with the Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry. She also serves at the Hubei Novel Reactor & Green Chemical Technology Key Laboratory and the Key Laboratory for Green Chemical Process of the Ministry of Education. Her work focuses on sustainable chemical engineering, green processes, and advanced biomass-based materials. Additionally, she is affiliated with the Hubei Three Gorges Laboratory in Yichang. Prof. Yu is based at No. 693 Xiongchu Avenue, Hongshan District, Wuhan, Hubei 430074, China.

Author Profile

Scopus

🌱 Early Academic Pursuits

Prof. Jun-xia Yu’s journey in the world of chemistry and environmental engineering began with a deep-rooted passion for scientific discovery and sustainable development. She pursued her undergraduate and postgraduate studies in chemical engineering, laying a strong foundation in process engineering, catalysis, and materials science. Her early academic years were marked by a keen interest in the transformation of biomass and the development of environmentally friendly technologies. Through rigorous training and academic excellence, she developed the skills necessary to lead advanced research in green chemical processes, eventually earning her position as a thought leader in her field.

🧪 Professional Endeavors

Currently, Prof. Jun-xia Yu is a senior faculty member at the Wuhan Institute of Technology, China. She holds a prestigious position at the School of Chemistry and Environmental Engineering and is actively involved with several key national and regional laboratories, including:

  • Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry

  • Hubei Novel Reactor & Green Chemical Technology Key Laboratory

  • Key Laboratory for Green Chemical Process of Ministry of Education

  • Hubei Three Gorges Laboratory, Yichang

Her work seamlessly integrates teaching, mentoring, and leading multidisciplinary research projects. Prof. Yu also plays a crucial role in establishing collaborative efforts between academic institutions and industry stakeholders to promote innovation in chemical technology.

🔬 Contributions and Research Focus

Prof. Yu’s research is at the forefront of green chemistry, particularly focusing on the conversion of biomasshigh-value energy and environmental materials. Her projects aim to develop novel catalysts, reactors, and processes that minimize environmental impact while maximizing efficiency.

Key areas of research include:

  • Development of biomass-based materials for environmental remediation

  • Design of green catalytic processes for energy conversion

  • Innovation in reactor technology for cleaner chemical production

  • Utilization of renewable resources in place of fossil-based inputs

Her contributions are documented in numerous high-impact scientific publications, patents, and conference presentations that continue to influence emerging trends in sustainable chemical processes.

🏆 Accolades and Recognition

Prof. Jun-xia Yu’s outstanding work has earned her recognition both nationally and internationally. She is a respected figure within the Ministry of Education’s green chemistry initiatives and regularly serves as an evaluator for various research programs. Her lab has received government funding and accolades for excellence in applied chemical research and innovation.

She is often invited to speak at global symposia and serves as a peer reviewer for reputable journals in chemistry, environmental engineering, and material sciences. Her mentorship of young researchers and postgraduates has also been widely praised.

🌍 Impact and Influence

Prof. Yu’s scientific contributions have had a significant impact on advancing China’s agenda for carbon neutrality, environmental sustainability, and clean energy development. By innovating processes that utilize renewable biomass, she helps reduce reliance on petroleum-based resources, aligning research outputs with broader climate and environmental goals.

Her collaborations with industries and government bodies have also resulted in real-world applications of laboratory research, making her work influential beyond academia. Many of her former students now hold key positions in industry, academia, and policy-making, extending her influenceo the next generation of green chemists.

💫 Legacy and Future Contributions

Prof. Jun-xia Yu’s legacy is one of scientific integrity, environmental consciousness, and tireless dedication to the advancement of green technologies. As global challenges like climate change and pollution intensify, her work serves as a beacon of innovation for sustainable development.

Looking ahead, she aims to:

  • Expand international collaborations with global research institutes

  • Explore next-generation biomass technologies for zero-emission applications

  • Train and empower a new wave of scientists dedicated to green chemistry

Her strategic role at the Hubei Three Gorges Laboratory also positions her to influence large-scale research infrastructure and regional innovation hubs focused on sustainability and energy transitions.

✍️ Publication Top Notes


📘Nano architectonics via in situ growth of MIL-101(Fe) on modified sugarcane bagasse for selective capture of glyphosate from aqueous solution

Journal: Environmental Chemical Engineering

Year: 2025