Minglu Zhang | Environmental Science | Best Researcher Award

Prof. Dr. Minglu Zhang | Environmental Science | Best Researcher Award

Beijing University of Technology and Business | China

Dr. Minglu Zhang is currently a professor in the Department of Environmental Engineering at Beijing Technology and Business University, having previously served as associate professor (2015–2019) and lecturer (2012–2015) in the same discipline. After completing a postdoctoral appointment in the School of Environment at Tsinghua University (2010–2012) and earlier research experience at the University of California, Irvine (2008–2010), he has built a distinguished career in environmental microbiology and water systems research. His primary research interests encompass microbial ecology and molecular microbiology in water and solid waste systems, with a special focus on antibiotic-resistant bacteria and resistance genes in drinking water systems. Dr. Zhang has led and contributed to several major national research projects. For example, he is the principal investigator on the “Typing and Traceability System for VBNC State Pathogens of Major Digestive Tract at Ports” (2022–2025, National Key R&D Program), as well as on the “Technology and Equipment Development for Monitoring, Early Warning and Purification of Malodorous Gas Emissions under Classified Collection of Domestic Waste” (2020–2024, National Key R&D Program). Earlier, he also led work on the distribution and migration of antibiotic resistance genes at multi-phase interfaces in drinking water distribution systems (2015–2017, National Natural Science Foundation of China). To date, Dr. Zhang has authored or co-authored numerous peer-reviewed scientific publications. According to his ResearchGate profile, his publication count is 79, with more than 1,300 citations. His academic impact is further reflected by his h-index, which is listed as 5 on the SciSpace author profile. Among his representative works are: “Metagenomics analysis of antibiotic resistance genes, bacterial community and virulence factor genes of fouled filters and effluents from household water purifiers in drinking water” (Science of the Total Environment, 2023); “Global transcriptional analysis for molecular responses of Alicyclobacillus acidoterrestris spores in drinking water after low- and medium-pressure UV irradiation” (Journal of Hazardous Materials, 2024); and “Highly efficient degradation of ethanol, acetaldehyde, and ethyl acetate removal by bio-trickling filter reactors” (Process Safety and Environmental Protection, 2024). These works illustrate how he combines high-throughput molecular methods (e.g. metagenomics, transcriptional profiling) with applied engineering systems (e.g. drinking water treatment, gas emission purification) to address critical environmental microbiology challenges. Over the course of his career, Dr. Zhang has established himself as a leading scholar at the intersection of environmental engineering and microbial molecular ecology. His work not only advances fundamental understanding of microbial community dynamics and resistance gene behavior in engineered systems, but also yields practical solutions for water quality protection, public health, and waste management. His contributions are broadly recognized in China’s environmental research community and are increasingly cited in the international literature.

Profiles: Orcid

Featured Publications

Zhang, M., et al. (2025). Adsorption and desorption characteristics of nano-metal-modified zeolite for removal of oxygenated volatile organic compounds. Coatings, 15(10), 1206. https://doi.org/10.3390/coatings15101206

Jiang, J., Zhang, Y., Cui, R., Ren, L., Zhang, M., & Wang, Y. (2023). Effects of two different proportions of microbial formulations on microbial communities in kitchen waste composting. Microorganisms, 11(10), 2605. https://doi.org/10.3390/microorganisms11102605

Wang, Y., Cui, R., Jiang, H., Bai, M., Zhang, M., & Ren, L. (2022). Removal of hydrogen sulfide and ammonia using a biotrickling filter packed with modified composite filler. Processes, 10(10), 2016. https://doi.org/10.3390/pr10102016

Xu, S., Zhang, L., Lin, K., Bai, M., Wang, Y., Xu, M., Zhang, M., Zhang, C., Shi, Y., & Zhou, H. (2021). Effects of light and water disturbance on the growth of Microcystis aeruginosa and the release of algal toxins. Water Environment Research, 93, 2958–2970. https://doi.org/10.1002/wer.1644

Amirhossein Nik Zad | Environmental Science | Best Researcher Award

Dr. Amirhossein Nik Zad | Environmental Science | Best Researcher Award

Università Cattolica del Sacro Cuore | Italy

Amirhossein Nikzad is a dedicated researcher specializing in the Food–Energy–Water Nexus, with a strong focus on agro‐photovoltaic (Agri‐PV) systems, photovoltaics, life cycle assessment, renewable energy technologies, CO₂ emissions reduction, energy management, and optimization of hybrid energy systems. Currently, he is pursuing a PhD in the Agri-Food program at the Catholic University of the Sacred Heart (started 1 November 2022) in Piacenza, Italy, where his investigations explore how combining agricultural production with solar photovoltaic installations can sustainably address the intertwined demands for food, clean energy, and water resources. Prior to that, he completed an MSc in Energy Systems Engineering at Shahrood University of Technology (2016–2019, Iran), where he developed skills in modelling, systems analysis, and performance assessment of renewable and hybrid energy systems. Over the course of his academic and research career, Amirhossein has contributed to [number of publications] peer-reviewed articles, accumulating approximately [number of citations] citations across his works, with an h-index of [your h-index]. His publications span Life Cycle Assessment studies, techno-economic and environmental feasibility analysis of Agri-PV, strategies for CO₂ reduction, and optimization of energy systems. He often uses modelling tools such as PVsyst, PVSOL, System Advisor Model (SAM), HOMER PRO, MATLAB, RETScreen Expert, and software for life cycle assessment like SimaPro, reflecting his commitment to combining empirical evidence and computational modelling. Amirhossein has also been active in academic service: reviewing for journals including Energy Strategy Reviews, Energy Research & Social Science, Sustainable Energy, Grids and Networks, Electric Power Systems Research, Energy Reports, and Renewable Energy Focus. He was appointed Associate Editor (from July 2025) of the American Journal of Electrical Power and Energy Systems. He has gained international experience through his fully funded PhD in Agro-Food Systems and a full‐time research fellowship at Mälardalen University (Västerås, Sweden, Sep 2024 ‐ Jan 2025).

His projects include participation in the European Union’s Horizon Europe programme, notably Value4Farm (since June 2023), which aligns with his interest in sustainable integration of energy generation and agricultural practice. He has also presented his work at major conferences, such as the 6th AgriVoltaics World Conference (Freiburg, Germany, July 2025), where he contributed three posters on topics linked to Agri-PV and the food-energy-water nexus. Amirhossein’s technical skills lie in PV system design and simulation (with PVsyst, PVSOL, SAM), hybrid renewable energy optimization, energy management and model-based optimization, and life cycle impact assessment with tools like SimaPro. His analytical skills are complemented by his experience lecturing in Solar PV system design and offering training sessions/workshops during his time in Iran. With a well-grounded background in energy systems engineering, a growing publication record, and involvement in cross-disciplinary, international projects, Amirhossein is building a strong profile at the intersection of renewable energy, environmental sustainability, and agricultural systems. His goal is to contribute to transformational research that enables decarbonization, sustainable resource use, and climate resilient food and energy systems.

Profiles: Scopus | Google Scholar

Featured Publications

Nikzad, A., & Chahartaghi, M. (2019). Technical, economic, and environmental modeling of solar water pump for irrigation of rice in Mazandaran province in Iran: A case study. Journal of Cleaner Production, 239, 118007. https://doi.org/10.1016/j.jclepro.2019.118007

Chahartaghi, M., & Nikzad, A. (2021). Exergy, environmental, and performance evaluations of a solar water pump system. Sustainable Energy Technologies and Assessments, 43, 100933. https://doi.org/10.1016/j.seta.2020.100933

Nikzad, A., & Mehregan, M. (2022). Techno-economic and environmental evaluations of a novel cogeneration system based on solar energy and cryptocurrency mining. Solar Energy, 232, 409–420. https://doi.org/10.1016/j.solener.2021.12.049

Bellone, Y., Croci, M., Impollonia, G., Zad, A. N., Colauzzi, M., Campana, P. E., & others. (2024). Simulation-based decision support for agrivoltaic systems. Applied Energy, 369, 123490. https://doi.org/10.1016/j.apenergy.2024.123490

Zad, A. N., Agostini, A., Impollonia, G., Zainali, S., Croci, M., Colauzzi, M., & Campana, P. E. (2024). Life cycle assessment of various agrivoltaic systems across Europe. Sustainable Production and Consumption.

Xiaoshu sun | Environmental economics | Best Researcher Award | 13371

Ms. Xiaoshu sun | Environmental economics | Best Researcher Award 

Ms. Xiaoshu sun, Northeastern University, China

Ms. Xiaoshu Sun is currently pursuing her Ph.D. in Applied Economics at Northeastern University, Shenyang, China. Her research focuses on the digital economy, green economy, and income distribution. She has published multiple papers in reputed journals including SSCI, SCI, and Scopus-indexed publications. Her recent work explores the impact of digital technology on rural-urban income disparity and the coupling between digital transformation and green manufacturing efficiency in China. Using advanced models like the non-expected SBM-DEM, she has contributed valuable insights into regional development dynamics. Ms. Sun also serves on the editorial board of Asia Pacific Economic and Management Review.

Profile

Orcid

🎓 Early Academic Pursuits

Ms. Xiaoshu Sun began her academic journey with a strong foundation in economics, demonstrating a keen interest in understanding the evolving dynamics of modern economies. Her passion for exploring the intersections between technology, sustainability, and economic equity led her to pursue a Ph.D. in Applied Economics at Northeastern University, Shenyang, China. From early in her academic career, she was drawn to complex issues such as income distribution, the digital economy, and environmental sustainability. This solid academic base has equipped her with both the theoretical knowledge and practical skills necessary to tackle pressing global economic challenges.

💼 Professional Endeavors

Though currently a Ph.D. student, Ms. Sun’s professional contributions are already noteworthy. She has authored and co-authored several research papers published in internationally recognized journals such as Economic Research-Ekonomska Istrazivanja, Journal of Environmental Planning and Management, Frontiers in Environmental Science, and PLOS ONE. These publications have addressed vital questions surrounding economic modernization, particularly in the context of China’s rapid digital transformation and green development initiatives.

In addition to her academic publishing, Ms. Sun holds an editorial appointment with the Asia Pacific Economic and Management Review, where she contributes to the peer review and knowledge dissemination processes. Her work reflects a deep commitment to advancing scholarly dialogue in her fields of interest.

🧠 Contributions and Research Focus

Ms. Xiaoshu Sun’s research is primarily focused on three interconnected areas:

  • Digital Economy

  • Green Economy

  • Income Distribution

One of her most significant contributions involves using the non-expected SBM-DEM model to measure green manufacturing efficiency across 274 prefecture-level cities in China. This empirical study has revealed that the coupling coordination between digitalization and green efficiency remains relatively low, with stark regional disparities. Notably, her findings emphasize that the digital economy exerts a positive “radiation effect”, meaning it not only boosts green manufacturing efficiency within a region but also benefits neighboring areas through technological spillovers. She further discovered that industrial agglomeration serves as a partial mediating factor in this process, highlighting the importance of industrial clustering in enhancing regional development.

Her published works reflect a strong methodological foundation, including the application of Spatial Durbin Modelling to analyze spatial effects and interdependencies. These insights are vital for policymakers aiming to bridge the digital divide and promote environmentally sustainable industrial growth.

🏆 Accolades and Recognition

While Ms. Sun is still in the early stages of her professional journey, her scholarly output has already earned international attention through publications in SSCI, SCI, and Scopus-indexed journals. This achievement is significant, especially for a Ph.D. candidate, and points to the rigorous quality and relevance of her work. Furthermore, her appointment to the editorial board of an academic journal at this stage of her career is a testament to her growing recognition within the academic community.

🌍 Impact and Influence

Ms. Sun’s research has direct implications for economic policy, urban planning, and sustainable development in China and other emerging economies. By highlighting the nuanced interactions between digital innovation and green growth, she offers a valuable roadmap for achieving sustainable economic modernization. Her findings advocate for targeted policy interventions to enhance digital infrastructure, foster industrial clusters, and balance regional development.

Moreover, her work contributes to global academic conversations around the UN Sustainable Development Goals (SDGs), particularly in areas such as industry innovation (SDG 9), reduced inequalities (SDG 10), and sustainable cities and communities (SDG 11).

🌟 Legacy and Future Contributions

Looking ahead, Ms. Xiaoshu Sun is poised to become a leading scholar in applied economics with a particular focus on the digital-green transition. As she progresses in her academic career, she is likely to engage in policy consultancy, interdisciplinary collaborations, and potentially take on advisory roles in governmental or international organizations. Her ability to bridge the gap between theoretical research and real-world application will be instrumental in shaping the next generation of sustainable economic policies.

With her proven analytical skills, dedication to sustainability, and commitment to academic excellence, Ms. Sun is set to leave a lasting impact not only in China but also on the broader global stage.

Publication Top Notes

ContributorsXiaoshu Sun; Wanyu Zhang; Xianming Kuang
Journal: Frontiers in Environmental Science
Year: 2024
Journal: Economic Research-Ekonomska Istraživanja
Year: 2023
ContributorsXiaoshu Sun; Jie Tao; Xianming Kuang
Journal: Environmental Planning and Management
Year: 2023