Dongdong Wang | Environmental Science | Research Excellence Award

Prof Dr. Dongdong Wang | Environmental Science | Research Excellence Award

University of Science and Technology of China | China

Prof. Dr. Dongdong Wang is a distinguished materials scientist and interdisciplinary researcher whose work bridges chemistry, nanotechnology, biology, and medicine, with a strong focus on nanozyme engineering and metal–organic framework (MOF)–derived functional materials for biomedical applications. He received his Bachelor of Science degree from Lanzhou University and earned his Ph.D. in 2018 from the University of Science and Technology of China (USTC). Following his doctoral training, he conducted postdoctoral research at Nanyang Technological University from 2018 to 2022, where he further expanded his expertise in advanced nanomaterials and catalytic systems. In June 2022, Prof. Wang joined USTC as a Professor and Principal Investigator, establishing an independent and rapidly growing research program. Prof. Wang has authored more than 80 high-impact research articles published in internationally leading journals such as Accounts of Chemical Research, Nature Communications, Angewandte Chemie, Advanced Materials, Chem, ACS Nano, and Advanced Science. His scholarly contributions demonstrate both depth and breadth, ranging from fundamental mechanistic studies to application-oriented innovations. His research is supported by competitive funding, including grants from the National Natural Science Foundation of China and the Anhui Provincial Natural Science Foundation, reflecting strong national recognition of his scientific leadership. In 2025, he was selected as a JMCB Emerging Investigators, further underscoring his rising international profile. The core of Prof. Wang’s research lies in the rational design and synthesis of porous nanozymes, single-atom nanozymes, and MOF-based hybrid materials. He systematically investigates their enzymatic catalytic mechanisms and explores their applications in tumor imaging, diagnosis, therapy, antibacterial treatment, and immunomodulation. A defining feature of his work is the integration of reactive oxygen species (ROS)–based catalytic therapy with modulation of the tumor microenvironment, providing innovative strategies for precision theranostics. Additionally, he explores the use of microorganisms and microbially synthesized nanomaterials in catalysis and tumor immunotherapy, opening new frontiers at the interface of biology and materials science. Beyond research outputs, Prof. Wang plays an active role in the scientific community as a guest editor for leading journals including Molecules, Materials, and Frontiers in Chemistry, and serves as an invited independent reviewer for top-tier journals such as Nature Communications, Journal of the American Chemical Society, ACS Nano, and Biomaterials. His achievements have been recognized through multiple prestigious honors, including the BaoGang Education Scholarship and the National Graduate Scholarship. Overall, Prof. Dongdong Wang’s research profile reflects originality, interdisciplinary impact, and sustained excellence, making him a strong candidate for the Research Excellence Award.

Citation Metrics (Scopus)

7000
6000
5000
4000
3000
2000
1000
  500
  400
  300
  200
  100
      0

Citations
6711

Documents
95

h-index
41

Citations

Documents

h-index

View Scopus Profile
      View Orcid Profile

Featured Publications


Elucidating the Critical Role of Water in Selective Hydrogenation of N-heterocycles on a Cobalt Catalyst

– Angewandte Chemie International EditionThis link is disabled., 2025

Shimelash Molla Kassaye | Environmental Science | Editorial Board Member

Dr. Shimelash Molla Kassaye | Environmental Science | Editorial Board Member

Mattu University | Ethiopia

Dr. Shimelash Molla Kassaye is a highly dedicated scholar and researcher specializing in Hydrology and Water Resources Management, with an extensive academic background and a strong record of scientific contributions in the field of environmental and water sciences. He currently serves as an Assistant Professor at Mattu University, Ethiopia, where he continues to advance research and teaching in hydrology, climate change, and watershed management. His professional journey reflects consistent excellence and commitment to solving pressing environmental and water-related challenges affecting the African continent. Dr. Kassaye earned his Ph.D. in Water Management (Hydrology and Water Resources Management) from the African Centre of Excellence in Water Management (ACEWM) at Addis Ababa University in 2024. His doctoral research, titled “Evaluating the Hydrological Dynamics under Land Use/Cover and Climate Change in the Baro River Basin, Ethiopia,” focused on understanding the complex interactions between climate variability, land use change, and hydrological responses in one of Ethiopia’s key river basins. His research offers vital insights into sustainable water resource management and policy planning under changing climatic conditions. Prior to his Ph.D., he obtained an M.Sc. in Hydraulic Engineering from Jimma University in 2017 with an outstanding CGPA of 3.88/4.00 and a B.Sc. in Hydraulic and Water Resources Engineering from Arbaminch University in 2011. His professional experience spans over a decade of teaching, research, and academic service. Before assuming his current position, Dr. Kassaye worked as a Researcher and Lecturer at Mattu University (2014–2021) and as a Graduate Assistant at Arbaminch University (2012–2014). Through these roles, he has contributed significantly to the training of young engineers and scientists, supervising research projects, and integrating innovative technologies into water resource education and management practices. Dr. Kassaye’s research expertise covers a broad range of topics, including hydrologic modeling, climate change and variability, drought monitoring and prediction, integrated watershed management, natural resource management, and hydrometeorological risk assessment. His multidisciplinary approach, combining remote sensing, geospatial analysis, and hydrological modeling, enables comprehensive assessments of environmental systems under stress from both natural and anthropogenic factors. He has published multiple peer-reviewed scientific papers in high-impact international journals such as Water, Environmental Earth Sciences, Environmental Systems Research, and Earth. His publications have explored critical themes such as the sensitivity of meteorological dynamics to catchment variability, the integrated impact of land use and topography on hydrological extremes, and the quantification of climate change effects on streamflow dynamics. His academic excellence, combined with practical expertise and a strong publication record, positions him as a leading early-career researcher contributing to Ethiopia’s and Africa’s sustainable water resource management efforts. His dedication to advancing hydrological science underscores his commitment to building climate resilience and fostering sustainable development in vulnerable regions.

Profiles: Orcid | Google Scholar

Featured Publications

Kassaye, S. M., Tadesse, T., Tegegne, G., & Hordofa, A. T. (2024). Quantifying the climate change impacts on the magnitude and timing of hydrological extremes in the Baro River Basin, Ethiopia. Environmental Systems Research, 13(1), 1–15.

Belay, H., Melesse, A. M., Tegegne, G., & Kassaye, S. M. (2025). Flood inundation mapping using the Google Earth Engine and HEC-RAS under land use/land cover and climate changes in the Gumara Watershed, Upper Blue Nile Basin, Ethiopia. Remote Sensing, 17(7), 1283.

Malede, D. A., Elumalai, V., Andualem, T. G., Mekonnen, Y. G., Yibeltal, M., Kassaye, S. M., & others. (2025). Understanding flood and drought extremes under a changing climate in the Blue Nile Basin: A review. Environmental and Sustainability Indicators, 100638.

Kassaye, S. M., Tadesse, T., & Tegegne, G. (2024). Quantifying the climate change impacts on the magnitude and timing of hydrological extremes in the Baro River Basin, Ethiopia. Environmental Systems Research, 13(2).

Kassaye, S. M., Tadesse, T., Tegegne, G., Hordofa, A. T., & Malede, D. A. (2024). Relative and combined impacts of climate and land use/cover change for the streamflow variability in the Baro River Basin (BRB). Earth, 5(2), 149–168.

Kassaye, S. M., Tadesse, T., Tegegne, G., & Tadesse, K. E. (2022). The sensitivity of meteorological dynamics to the variability in catchment characteristics. Water, 14(22), 3776.

Kassaye, S. M., Tadesse, T., Tegegne, G., & Hordofa, A. T. (2024). Integrated impact of land use/cover and topography on hydrological extremes in the Baro River Basin. Environmental Earth Sciences, 83(2), 49.

Kassaye, S. M., Ebissa, T. N., Gutema, B. G., & Gurmesa, G. T. (2020). Site selection and design of mini hydropower plant for rural electrification in Keber River. American Journal of Electrical Power and Energy Systems, 9(5), 82–96.

Ebissa, T. N., Kassaye, S. M., & Malede, D. A. (2024). Hydrological response to climate change in Baro Basin, Ethiopia, using representative concentration pathway scenarios. Environmental Systems Research, 13(1), 42.

Waheed, A., Kousar, S., Khan, M. I., & Fischer, T. B. (2025). Environmental and Sustainability Indicators. Environmental and Sustainability Indicators.