Hongbo Pan | Materials science | Best Researcher Award | 13239

Prof Dr. Hongbo Pan | Materials science | Best Researcher Award 

Prof Dr. Hongbo Pan, Anhui university of technology, China

Prof. Dr. Hongbo Pan is a distinguished scholar at Anhui University of Technology, China, specializing in advanced materials science, engineering innovations, and sustainable manufacturing technologies. His research focuses on nanomaterials, energy storage systems, and industrial applications of smart materials, contributing significantly to green energy solutions and high-performance materials. Dr. Pan has led numerous national and international research collaborations, published extensively in top-tier scientific journals, and received multiple awards for his innovative contributions to material science and industrial technology. His work continues to drive advancements in sustainable engineering and technological development. 🚀🔬

Profile

Scopus

Early Academic Pursuits 🎓

Prof. Dr. Hongbo Pan’s journey into academia began with a strong foundation in materials science and engineering, where he exhibited a deep curiosity for innovative materials and industrial applications. He pursued his higher education at prestigious institutions, gaining expertise in nanomaterials, energy storage systems, and sustainable technologies. His early research focused on material properties optimization and developing energy-efficient solutions, laying the groundwork for his future contributions to the field.

Professional Endeavors 🏛️

Currently serving as a professor at Anhui University of Technology, China, Dr. Pan has been instrumental in advancing research in materials science and engineering. He has led several high-impact national and international research collaborations, working with industry leaders and academic peers to develop cutting-edge solutions in green energy, advanced manufacturing, and high-performance materials. His expertise spans various disciplines, including metallurgy, composites, and semiconductor materials.

Dr. Pan has also held key leadership roles, guiding students, researchers, and industry professionals in the pursuit of innovation. Through his mentorship and academic leadership, he has contributed to the growth of new generations of scientists and engineers who are shaping the future of sustainable technology.

Contributions and Research Focus 🔍

Prof. Dr. Pan’s research focuses on developing next-generation materials with enhanced performance and sustainability. His major contributions include:

  • Nanomaterials and Energy Storage ⚡: Advancing battery and capacitor technologies through novel material designs.
  • Smart and Functional Materials 🧪: Innovating in fields such as shape-memory alloys, self-healing materials, and high-strength composites.
  • Sustainable Manufacturing 🏭: Pioneering eco-friendly processes for industrial applications.
  • Metallurgical Innovations 🔩: Enhancing metal processing techniques for increased efficiency and durability.

His research has led to numerous patents, pushing the boundaries of industrial materials science and significantly impacting energy efficiency and environmental sustainability.

Accolades and Recognition 🏆

Dr. Pan’s groundbreaking research has earned him prestigious awards and honors from both national and international institutions. He has been recognized for his contributions to materials innovation, energy solutions, and sustainable manufacturing. Some of his notable recognitions include:

  • Best Researcher Award for advancements in energy storage technologies.
  • Outstanding Professor Award for his contributions to academia and mentorship.
  • International Collaboration Grant for his work in global materials research projects.
  • Multiple patents in the fields of nanotechnology and metallurgy.

His work has been extensively published in high-impact journals, earning citations from researchers worldwide and solidifying his reputation as a leading expert in the field.

Impact and Influence 🌍

Dr. Pan’s influence extends beyond academia, as his research has led to real-world applications in industries such as energy, manufacturing, and electronics. His work in sustainable materials has contributed to global efforts in reducing environmental footprints while enhancing industrial efficiency.

As a mentor, he has trained and inspired numerous students and researchers, many of whom are now leading scientists and engineers in their respective fields. His collaborations with international institutions have fostered knowledge exchange and driven forward-thinking research initiatives worldwide.

Publication Top Notes

Author: K., Shao, Kaixuan, Y., Niu, Yuhao, Y., Pei, Yinghao, H., Pan, Hongbo, H., Wang, Haijun

Journal: Crystals

Year: 2024

Author: K., Zhang, Ke, T., Zhang, Tenghao, H., Wei, Hongyu, G., Yang, Gengwei, P., Zhao, Peilin

Journal: Materials Research and Technology,

Year: 2024

Author: H., Wei, Hailian, Y., Cai, Yong, H.D., Peng, Hao Dong, J., Wang, Jian, Y., Wang, Yongqiang

Journal: Steel Research International

Year: 2024

 

 

Muhammad Ahsan Saleem | Additive Manufacturing | Best Researcher Award

Mr. Muhammad Ahsan Saleem | Additive Manufacturing | Best Researcher Award

Mr. Muhammad Ahsan Saleem, Nanjing University of Science and Technology, China

Mr. Muhammad Ahsan Saleem is a distinguished researcher affiliated with Nanjing University of Science and Technology, China. His expertise lies in advanced materials science, focusing on the synthesis, characterization, and application of functional materials for energy storage and conversion systems. With a strong academic foundation and innovative approach, Mr. Saleem contributes significantly to the development of sustainable technologies, driving advancements in battery systems and renewable energy solutions. His research embodies a commitment to excellence and a vision for addressing global energy challenges through cutting-edge scientific innovation.

Profile

Scopus

🎓 Educational Qualification

Muhammad Ahsan Saleem’s journey in the realm of engineering began with his enrollment in a Bachelor’s program in Mechatronics Engineering at the University of Engineering and Technology, Taxila, Pakistan. Graduating in 2013, he laid a robust foundation in interdisciplinary engineering concepts. His dedication to academic excellence and a deep interest in research led him to pursue advanced degrees at the prestigious Nanjing University of Science and Technology, China, where he obtained a Master of Engineering in 2018 and is currently working towards his Doctorate in Mechanical Engineering. His academic journey reflects a commitment to learning and innovation, enabling him to excel in diverse fields of engineering and technology.

🏢🔬Professional Endeavors

Mr. Saleem’s professional career is a testament to his ability to bridge theory and practice. As a researcher at Nanjing University of Science and Technology, he has contributed to cutting-edge advancements in mechanical and electrical engineering. His work focuses on:

  • 3D Printing Innovations: Designing experiments to optimize inkjet printing processes, achieving dimensional precision, and creating functional electronics through innovative methods.
  • Data-Driven Insights: Introducing machine learning applications and data acquisition techniques for enhanced experimentation.
  • Servo Motor Control: Developing a GUI and implementing cross-platform solutions for servo motor performance analysis using advanced tools like Raspberry Pi and Arduino.

Prior to his academic research role, Mr. Saleem worked as a Mechatronics Engineer at Enginesound Automation Technology in Shanghai, China. Here, he designed flexible bend control devices for textile machine calibration and developed Android applications for wireless data management. His professional trajectory showcases a balance between academic exploration and practical problem-solving.

🌍🔍Contributions and Research Focus 

Muhammad Ahsan Saleem has demonstrated a consistent focus on interdisciplinary research that spans diverse fields:

  • Advanced Manufacturing: His work on inkjet printing of high-viscosity inks and functional electronics is paving the way for next-generation manufacturing technologies.
  • Energy Materials: Collaborating on projects involving selective laser processing and exploring the role of silicon carbide in improving material properties.
  • Automation and Control: Designing innovative control systems for twin rotors and developing advanced algorithms for automated car parking solutions.

His ability to integrate machine learning, experimental design, and engineering principles has positioned him as a key contributor to technological advancement. His research outputs are not only theoretically significant but also have practical implications for industrial applications.

🏆Accolades and Recognition 

Throughout his career, Mr. Saleem has garnered recognition for his innovative research and technical contributions:

  • Publications: He has authored impactful research articles in renowned journals like Precision Engineering and Nonlinear Analysis: Hybrid Systems. His works focus on groundbreaking topics such as waveform estimation in multi-material inkjet printing and selective laser processing.
  • Patents: He has applied for patents, including a laser scanning method to enhance interlayer strength, underscoring his inventive mindset.
  • Collaborations: Engaging with international teams, he has worked on projects that integrate interdisciplinary knowledge and advanced technologies.

His professional achievements highlight his dedication to pushing the boundaries of engineering and research.

📝Publication Top Notes

Author: Rehman, A.U., Saleem, M.A., Liu, T., Pitir, F., Salamci, M.U.

Journal: Materials

Year: 2022

Author: Aslam, M.S., Qaisar, I., Saleem, M.A.

Journal: Nonlinear Analysis: Hybrid Systems

Year: 2020

 

Georgina Gregory | Chemistry and Materials Science | Best Researcher Award

Dr. Georgina Gregory | Chemistry and Materials Science | Best Researcher Award

Royal Society Dorothy Hodgkin Fellow at University of Oxford, United Kingdom.

Georgina L. Gregory is a renowned chemist and Royal Society Dorothy Hodgkin Research Fellow at the University of Oxford. She holds a PhD and MRes (Distinction) from the University of Bath and a first-class honours MSci from Imperial College London. Her career spans academia and industry, including roles at Wadham College, the Faraday Institute, and Crown Packaging Ltd. Georgina’s research focuses on sustainable chemical technologies and battery applications, particularly innovative polymers for energy storage. She has received numerous awards for her leadership and research excellence, highlighting her expertise in strategic planning, data analysis, and project management. Georgina continues to drive advancements in green chemistry, making significant contributions to her field. 🌿🔬🌟

Professional Profiles:

Education

Georgina L. Gregory holds a PhD and MRes (Distinction) in Chemistry from the Centre for Sustainable Chemical Technologies at the University of Bath, which she completed in 2017. She also earned a first-class honours MSci in Chemistry from Imperial College London in 2011. 🎓🌟

Professional Experience

Georgina Gregory’s professional journey is marked by significant roles in academia and industry. She currently serves as a Royal Society Dorothy Hodgkin Research Fellow at the University of Oxford’s Department of Chemistry since October 2022. Concurrently, she is a Junior Research Fellow in Inorganic Chemistry at Wadham College, Oxford, a position she has held since October 2020. Previously, she was a Senior Postdoctoral Research Associate on the SOLBAT project at the Faraday Institute (2020-2022) and a Postdoctoral Research Associate in the Chemistry Research Lab at Oxford (2018-2020). Her industry experience includes a role as a Scientist at Crown Packaging Ltd. (2017-2018) and a PhD Placement at Syngenta (2016). 🔬📊

Research Interest

Georgina Gregory’s research interests are centered around sustainable chemical technologies and battery applications. Her work focuses on the development of polymers for use in energy storage, particularly in batteries, and she is actively involved in exploring innovative materials and methodologies to improve battery performance and sustainability. She is passionate about contributing to advancements in green chemistry and the development of environmentally friendly chemical processes. 🌿🔋

Awards and Honors

Georgina has received numerous awards and honors throughout her career. Notably, she has been recognized by the University of Oxford with the Award for Excellence Scheme, both in salary increments and monetary awards in 2022 and 2023. She has also received the Recognition Award for Leadership at Oxford in 2021 and 2022. Her research presentations have garnered accolades, including the Best Talk Prize at the Recent Appointees in Polymer Science (RAPS) in 2022, and several poster prizes and talk awards from conferences and symposia during her academic tenure. 🏆🎖️

Research Skills

Georgina Gregory possesses a robust set of research skills, including strategic planning, innovation, and creativity in scientific research. She is proficient in data analysis and project planning, with strong quantitative skills and experience in audit reporting. Her analytical thinking and ability to manage interdisciplinary teams have been instrumental in her research endeavors, particularly in the development and application of polymers for battery technologies. Her expertise is further demonstrated by her numerous invited presentations, published patents, and successful mentorship of graduate and undergraduate students. 📊

Publications

  1. Switchable Catalysis Improves the Properties of CO2-Derived Polymers: Poly(cyclohexene carbonate-b-ε-decalactone-b-cyclohexene carbonate) Adhesives
    • Authors: GS Sulley, GL Gregory, TTD Chen, L Peña Carrodeguas, G Trott, CK Williams
    • Year: 2020
    • Citations: 195
  2. Polymers from sugars: cyclic monomer synthesis, ring-opening polymerisation, material properties and applications
    • Authors: GL Gregory, EM López-Vidal, A Buchard
    • Year: 2017
    • Citations: 137
  3. Sequence control from mixtures: switchable polymerization catalysis and future materials applications
    • Authors: AC Deacy, GL Gregory, GS Sulley, TTD Chen, CK Williams
    • Year: 2021
    • Citations: 129
  4. Polymers from Sugars and CO2: Synthesis and Polymerization of a d-Mannose-Based Cyclic Carbonate
    • Authors: GL Gregory, LM Jenisch, B Charles, G Kociok-Kohn, A Buchard
    • Year: 2016
    • Citations: 115
  5. 2020 roadmap on solid-state batteries
    • Authors: M Pasta, D Armstrong, ZL Brown, J Bu, MR Castell, P Chen, A Cocks, et al.
    • Year: 2020
    • Citations: 112
  6. Easy access to oxygenated block polymers via switchable catalysis
    • Authors: T Stößer, GS Sulley, GL Gregory, CK Williams
    • Year: 2019
    • Citations: 93
  7. Bio‐based and degradable block polyester pressure‐sensitive adhesives
    • Authors: TTD Chen, LP Carrodeguas, GS Sulley, GL Gregory, CK Williams
    • Year: 2020
    • Citations: 81
  8. Triblock polyester thermoplastic elastomers with semi-aromatic polymer end blocks by ring-opening copolymerization
    • Authors: GL Gregory, GS Sulley, LP Carrodeguas, TTD Chen, A Santmarti, CK Williams
    • Year: 2020
    • Citations: 81
  9. Synthesis of 5-to 8-membered cyclic carbonates from diols and CO2: A one-step, atmospheric pressure and ambient temperature procedure
    • Authors: TM McGuire, EM López-Vidal, GL Gregory, A Buchard
    • Year: 2018
    • Citations: 80
  10. Synthesis of 6-membered cyclic carbonates from 1,3-diols and low CO2 pressure: A novel mild strategy to replace phosgene reagents
    • Authors: GL Gregory, M Ulmann, A Buchard
    • Year: 2015
    • Citations: 78

 

 

Vinuta Kamat | Chemistry and Materials Science | Women Researcher Award

Dr. Vinuta Kamat | Chemistry and Materials Science | Women Researcher Award

Post-doctoral fellow of Jain University of University, India.

Dr. Vinuta Vishnu Kamat is a dedicated and accomplished researcher in the field of chemistry, currently working as a post-doctoral fellow at the Centre for Nano and Material Sciences, Jain University, Bengaluru, India. She has a robust academic background, having completed her Ph.D. in Chemistry at Mangalore University under the guidance of Prof. Boja Poojary. Her dissertation focused on the synthesis, characterization, and biological studies of nitrogen and sulfur-containing heterocycles. Dr. Kamat has a wealth of teaching experience, including three years and eight months of teaching chemistry to B.Sc. students and practical sessions during her doctoral research tenure. She also taught M.Sc. students as a guest faculty at Mangalore University. Her professional competence is demonstrated through her strong teaching skills and her ability to conduct multistep chemical synthesis, purification, and structural determination using various spectroscopic techniques.

 

Professional Profiles:

Education

Dr. Vinuta Kamat is currently pursuing a post-doctoral fellowship at the Centre for Nano and Material Sciences, Jain University, Bengaluru, Karnataka, India, where she has been working since October 2022. Her research focuses on the design and synthesis of nitrogen-containing heterocycles and their biological properties. Prior to this, she completed her Ph.D. in Chemistry at Mangalore University, Mangalagangotri, Karnataka, India, from February 2016 to March 2022. Under the supervision of Prof. Boja Poojary, her dissertation explored the synthesis, characterization, and biological studies of nitrogen and sulfur-containing heterocycles. Dr. Kamat also holds an M.Sc. in Chemistry with a specialization in Medicinal Chemistry, which she obtained from Sri Dharmasthala Manjunatheshwar College, Ujire, Karnataka, India, in 2013, graduating with first-class distinction (70.81%).

Professional Experience

Dr. Vinuta Kamat has a diverse background in teaching and research. She is currently a post-doctoral fellow at the Centre for Nano and Material Sciences, Jain University, Bengaluru, Karnataka, where she has been working since October 2022. Her research focuses on the design and synthesis of nitrogen-containing heterocycles and their biological properties. Before her current role, Dr. Kamat served as a guest faculty member in the Department of Industrial Chemistry at Mangalore University, Karnataka, from April 2022 to October 2022. Here, she taught both theory and practical chemistry courses to B.Sc. and M.Sc. students. Dr. Kamat’s teaching experience spans three years and eight months, during which she taught chemistry theory and practicals to B.Sc. students and conducted practical sessions for M.Sc. students during her doctoral research. She has honed her teaching skills and gained extensive experience in multistep chemical synthesis, purification techniques, and the interpretation of various spectroscopic data. Her professional competence also includes proficiency in MS Office and chemistry software such as ChemDraw and ChemSketch. Dr. Kamat’s contributions to research are evident through her hands-on experience with various instruments and techniques used in her field of study.

Research Interest

Dr. Vinuta Kamat’s research interests lie in several cutting-edge areas of chemistry and material sciences. She is deeply involved in the synthesis and characterization of heterocycles, focusing on their potential biological properties. Her work extends to the synthesis and characterization of metal oxide nanoparticles derived from plant sources, exploring their various applications in environmental remediation and energy. One of her significant interests is in photocatalytic degradation, specifically dye remediation in wastewater, a crucial area for environmental sustainability. Dr. Kamat is also engaged in research related to water splitting and hydrogen evolution, contributing to the development of alternative energy sources. Furthermore, she evaluates antioxidant activity using assays such as DPPH and H2O2 and studies anti-inflammatory properties through protein denaturation methods. Her expertise includes DNA binding studies and hemolytic assays, showcasing her interdisciplinary approach to research. Additionally, Dr. Kamat is proficient in UV and photoluminescence (PL) studies, which are essential for understanding the optical properties of materials. Her diverse research interests reflect her commitment to advancing knowledge in chemistry and its applications to solve real-world problems.

Award and Honors

Dr. Vinuta Vishnu Kamat has been recognized for her exceptional contributions to the field of chemistry with several prestigious awards and honors. She qualified the Graduate Aptitude Test in Engineering (GATE) in 2017, a testament to her proficiency and knowledge in engineering and science. In the same year, she also cleared the Karnataka State Eligibility Test (KSET) for Lecturer/Assistant Professorships, highlighting her academic excellence and teaching capabilities. Her doctoral research was supported by a fellowship from the Karnataka Science and Technology Promotion Society (KSTePS), under the Department of Science and Technology (DST). This fellowship, awarded for her outstanding research potential, enabled her to make significant contributions to her field. Moreover, Dr. Kamat serves as an Editorial Board Member of the American Journal of Heterocyclic Chemistry (AJHC) from May 2023 to May 2025, recognizing her expertise and leadership in heterocyclic chemistry. These accolades reflect her dedication, expertise, and the impact of her research in the scientific community.

Research Skills

Dr. Vinuta Vishnu Kamat possesses a diverse and comprehensive set of research skills, honed through her extensive academic and professional journey in chemistry. She is adept in the synthesis and characterization of heterocycles, showcasing her ability to create and analyze complex chemical compounds. Her proficiency extends to the synthesis and characterization of metal oxide nanoparticles derived from plant sources, indicating her expertise in nanotechnology and green chemistry. Dr. Kamat is skilled in photocatalytic degradation for dye remediation in wastewater, demonstrating her commitment to environmental chemistry and sustainable practices. Her research includes water splitting and hydrogen evolution, highlighting her involvement in alternative energy research. She is experienced in evaluating antioxidant assays using DPPH and H2O2 methods, as well as anti-inflammatory assays through protein denaturation methods. Additionally, she conducts DNA binding studies and hemolytic assays, reflecting her versatility in biochemical research.

Publication

  1. Title: Pyridine- and Thiazole-Based Hydrazides with Promising Anti-inflammatory and Antimicrobial Activities along with Their In Silico Studies
    • Authors: V. Kamat, R. Santosh, B. Poojary, S.P. Nayak, B.K. Kumar
    • Journal: ACS Omega
    • Volume: 5
    • Issue: 39
    • Pages: 25228-25239
    • Year: 2020
    • Citations: 65
  2. Title: Characterization studies of novel series of cobalt (II), nickel (II) and copper (II) complexes: DNA binding and antibacterial activity
    • Authors: V. Adimule, B.C. Yallur, V. Kamat, P.M. Krishna
    • Journal: Journal of Pharmaceutical Investigation
    • Volume: 51
    • Pages: 347-359
    • Year: 2021
    • Citations: 50
  3. Title: Novel pyrazole‐clubbed thiophene derivatives via Gewald synthesis as antibacterial and anti‐inflammatory agents
    • Authors: S.G. Nayak, B. Poojary, V. Kamat
    • Journal: Archiv der Pharmazie
    • Volume: 353
    • Issue: 12
    • Article: 2000103
    • Year: 2020
    • Citations: 34
  4. Title: Synthesis of novel Schiff bases using 2-Amino-5-(3-fluoro-4-methoxyphenyl) thiophene-3-carbonitrile and 1, 3-Disubstituted pyrazole-4-carboxaldehydes derivatives and their …
    • Authors: D. Puthran, B. Poojary, N. Purushotham, N. Harikrishna, S.G. Nayak, V. Kamat
    • Journal: Heliyon
    • Volume: 5
    • Issue: 8
    • Year: 2019
    • Citations: 27
  5. Title: Synthesis, molecular docking, antibacterial, and anti‐inflammatory activities of benzimidazole‐containing tricyclic systems
    • Authors: V. Kamat, B.C. Yallur, B. Poojary, V.B. Patil, S.P. Nayak, P.M. Krishna, S.D. Joshi
    • Journal: Journal of the Chinese Chemical Society
    • Volume: 68
    • Issue: 6
    • Pages: 1055-1066
    • Year: 2021
    • Citations: 12
  6. Title: Novel thiazolidin‐4‐one clubbed thiophene derivatives via Gewald synthesis as anti‐tubercular and anti‐inflammatory agents
    • Authors: S.G. Nayak, B. Poojary, V. Kamat, D. Puthran
    • Journal: Journal of the Chinese Chemical Society
    • Volume: 68
    • Issue: 6
    • Pages: 1116-1127
    • Year: 2021
    • Citations: 10
  7. Title: Synthesis and antibacterial evaluation of pyrazolines carrying (benzyloxy) benzaldehyde moiety
    • Authors: C.H.A. Rajeena, V. Kamat, V.B. Patil, S.P. Nayak, S. Khanapure, D.A. Barretto
    • Journal: Journal of the Iranian Chemical Society
    • Pages: 1-10
    • Year: 2022
    • Citations: 6
  8. Title: In vitro α-amylase and α-glucosidase inhibition study of dihydropyrimidinones synthesized via one-pot Biginelli reaction in the presence of a green catalyst
    • Authors: V. Kamat, D.A. Barretto, B. Poojary, A. Kumar, V.B. Patil, S. Hamzad
    • Journal: Bioorganic Chemistry
    • Volume: 143
    • Article: 107085
    • Year: 2024
    • Citations: 2
  9. Title: Catalytic role in Biginelli reaction: Synthesis and biological property studies of 2‐oxo/thioxo‐1, 2, 3, 4‐tetrahydropyrimidines
    • Authors: V. Kamat, D.S. Reddy, A. Kumar
    • Journal: Archiv der Pharmazie
    • Volume: 356
    • Issue: 6
    • Article: 2300008
    • Year: 2023
    • Citations: 2