Dr. Chinedu Okere | Engineering | Best Researcher Award
University of Houston | United States
Dr. Chinedu (Junior) Okere is a dynamic early-career researcher whose interests span subsurface hydrogen generation, large-scale hydrogen storage in geological formations, experimental and numerical modelling of CO₂ capture, utilisation and storage (CCUS), methane leakage from orphaned wells, and drilling/fracturing fluid design and formation-damage mitigation in petroleum reservoirs. His professional trajectory has taken him from graduate research at the China University of Petroleum (Beijing) (M.Eng., 2022) to doctoral studies at the Texas Tech University (Ph.D., 2025) and onward to a post-doctoral appointment in the Department of Petroleum Engineering at the University of Houston (from mid-2025). In these roles he has supervised PhD students, managed a U.S. Department of Energy-funded CarbonSAFE project on CO₂ storage, and led the development of grant proposals, patents and peer-reviewed publications. According to his Google Scholar profile he has to date achieved 659 citations and an h-index of 15, with an i10-index of 19. His publication record includes a broad spectrum of articles (20+, depending on counting method) covering topics from “clean hydrogen generation from petroleum reservoirs” to fuzzy-ball fluid‐induced damage in tight reservoirs, reservoir suitability for hydrogen storage, and methane leakage from abandoned wells. Most recently, his first‐author papers (2024-2025) address techno-economic feasibility of in-situ hydrogen production from petroleum reservoirs, SARA-based experimental and numerical investigations of in-situ hydrogen generation, and comparative numerical studies for optimisation of hydrogen production and CCUS strategies. In recognition of his impact he has received numerous honours including the 2024 International Inventions Awards – Hydrogen Energy Best Researcher Award, and the Society of Petroleum Engineers Permian Basin Scholarship. With strong interdisciplinary credentials spanning petroleum engineering, energy systems, reservoir simulation, and hydrogen/CCUS technologies, Dr. Okere stands out as an emerging scholar bridging the conventional oil-&-gas domain with the clean/hydrogen energy transition. His h-index of 15 reflects a solid early‐career impact: it means he has at least 15 publications each cited at least 15 times. (The h-index concept was originally proposed by J. E. Hirsch as a simple measure of productivity and citation impact. Going forward, his strong publication momentum, growing citation base and leadership in grant/industry-adjacent projects suggest that he is well-positioned to further increase both his research output and influence in the hydrogen/CCUS engineering community.
Profiles: Scopus | Orcid | Google Scholar
Featured Publications
Okere, C. J., & Sheng, J. J. (2023). Review on clean hydrogen generation from petroleum reservoirs: Fundamentals, mechanisms, and field applications. International Journal of Hydrogen Energy, 101.
Edouard, M. N., Okere, C. J., Ejike, C., Dong, P., & Suliman, M. A. M. (2023). Comparative numerical study on the co-optimization of CO₂ storage and utilization in EOR, EGR, and EWR: Implications for CCUS project development. Applied Energy, 347, 121448.
Eyitayo, S. I., Okere, C. J., Hussain, A., Gamadi, T., & Watson, M. C. (2024). Synergistic sustainability: Future potential of integrating produced water and CO₂ for enhanced carbon capture, utilization, and storage (CCUS). Journal of Environmental Management, 351, 119713.
He, J., Okere, C. J., Su, G., Hu, P., Zhang, L., Xiong, W., & Li, Z. (2021). Formation damage mitigation mechanism for coalbed methane wells via refracturing with fuzzy-ball fluid as temporary blocking agents. Journal of Natural Gas Science and Engineering, 90, 103956.
Okere, C. J., Su, G., Zheng, L., Cai, Y., Li, Z., & Liu, H. (2020). Experimental, algorithmic, and theoretical analyses for selecting an optimal laboratory method to evaluate working fluid damage in coal bed methane reservoirs. Fuel, 282, 118513.
Tao, X., Okere, C. J., Su, G., & Zheng, L. (2022). Experimental and theoretical evaluation of interlayer interference in multi-layer commingled gas production of tight gas reservoirs. Journal of Petroleum Science and Engineering, 208, 109731.
Okere, C. J., & Sheng, J. J. (2024). A new modelling approach for in-situ hydrogen production from heavy oil reservoirs: Sensitivity analysis and process mechanisms. Energy, 302, 131817.
Opara, S. U., & Okere, C. J. (2024). A review of methane leakage from abandoned oil and gas wells: A case study in Lubbock, Texas, within the Permian Basin. Energy Geoscience, 5(3), 100288.