Heng Liu | Environmental and Sustainable Materials | Research Excellence Award

Mr. Heng Liu | Environmental and Sustainable Materials | Research Excellence Award

Qingdao University of Science and Technology | China

Prof. Heng Liu is an accomplished materials scientist and professor at Qingdao University of Science and Technology, widely recognized for his significant contributions to organometallic catalysis and polymer chemistry. He earned his Ph.D. in 2015 from the Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences (CAS), followed by productive postdoctoral research at the Technion – Israel Institute of Technology between 2015 and 2017. Upon returning to China, he served as an associate professor at CIAC before joining Qingdao University of Science and Technology as a full professor in 2020. Throughout his career, Prof. Liu has built an impressive portfolio of research achievements that reflect his scientific rigor, innovation, and leadership in advancing olefin and diene polymerization technologies. His research primarily focuses on the development of high-efficiency organometallic catalysts, the functionalization of polymers, and performance enhancement strategies for synthetic rubber materials—areas that hold major industrial relevance in the rubber, plastic, and advanced materials sectors. Prof. Liu has published 63 high-impact journal articles in prestigious publications such as Advanced Functional Materials, ACS Catalysis, Coordination Chemistry Reviews, Macromolecules, and other leading SCI-indexed platforms. His strong publication record is supported by a robust citation footprint in global scientific databases, reflecting the wide impact and recognition of his work within the research community. He has successfully led and participated in multiple funded research projects, including major grants from the National Natural Science Foundation of China (52573115, 22071236, 21801236), the Shandong Province Natural Science Foundation (ZR2024ME117), and the Taishan Scholar Foundation (202211165), demonstrating his capability to secure competitive funding for frontier research. Beyond academic projects, Prof. Liu has completed six consultancy and industry collaborations, reinforcing the practical applicability of his scientific innovations. He holds 18 patents, underscoring his commitment to translating research outcomes into technological advancements. His editorial contributions include serving on the editorial boards of Frontiers in Chemistry and China Synthetic Rubber Industry, where he supports scholarly communication and peer review in his field. Prof. Liu’s work is strengthened by active collaborations with researchers across institutions and countries, contributing to scientific progress through interdisciplinary engagement. With expertise spanning catalysis, polymer design, and advanced material fabrication, Prof. Liu continues to make substantial contributions to both fundamental science and industrial technology. His achievements, leadership, and innovation position him as a distinguished candidate for the Research Excellence Award.

Profile: Scopus | Orcid

Featured Publications

Polymer Chemistry (2025)

Zhang, H., Zhang, X., Zheng, H., Wang, F., Wei, X., Zhang, X., & Liu, H. (2025). Synthesis of α,ω-end hetero-functionalized polyisoprene via neodymium-mediated coordinative chain transfer polymerization. Polymer Chemistry. https://doi.org/10.1039/D4PY01452A

Journal of Applied Polymer Science (2025 – Nov 05)

Zheng, H., Zhang, H., Zhao, W., Wang, F., Zhang, X., & Liu, H. (2025). Controllable preparation of hydroxyl-terminated liquid polydiene rubber featuring high 1,4-content by neodymium-mediated coordinative chain transfer polymerizations strategy. Journal of Applied Polymer Science. https://doi.org/10.1002/app.57602

Journal of Applied Polymer Science (2025 – Mar 10)

Li, X., Zhang, X., Wang, F., Liu, W., Zhang, X., & Liu, H. (2025). Neodymium-mediated coordinative chain transfer homopolymerization of bio-based myrcene and copolymerization with butadiene and isoprene. Journal of Applied Polymer Science. https://doi.org/10.1002/app.56557

Macromolecules (2025 – Feb 25)

Wang, X., Ma, L., Dong, B., Zhang, C., Zhang, X., & Liu, H. (2025). Axial anagostic interaction in α-diimine nickel catalysts: An ultraefficient occupation strategy in suppressing associative chain transfers to achieve UHMWPEs. Macromolecules, 58(?), pages pending. https://doi.org/10.1021/acs.macromol.4c03244

Molecular Catalysis (2024)

Liu, X., Yang, Q., Zhang, C., Zhang, X., & Liu, H. (2024). 3,4-selective polymerization of isoprene by iron-based system: The key role of borate salts for enhancing catalytic activities and broadening 1,10-phenanthroline ligand scope. Molecular Catalysis, 114082. https://doi.org/10.1016/j.mcat.2024.114082

SSRN Preprint (2024)

Liu, H., Liu, X., Zhang, C., Yang, Q., & Zhang, X. (2024). 3,4-selective polymerization of isoprene by iron-based system: The key role of borate salts for enhancing catalytic activities and broadening 1,10-phenanthroline ligand scope [Preprint]. SSRN. https://doi.org/10.2139/ssrn.4690393

 

Minglu Zhang | Environmental Science | Best Researcher Award

Prof. Dr. Minglu Zhang | Environmental Science | Best Researcher Award

Beijing University of Technology and Business | China

Dr. Minglu Zhang is currently a professor in the Department of Environmental Engineering at Beijing Technology and Business University, having previously served as associate professor (2015–2019) and lecturer (2012–2015) in the same discipline. After completing a postdoctoral appointment in the School of Environment at Tsinghua University (2010–2012) and earlier research experience at the University of California, Irvine (2008–2010), he has built a distinguished career in environmental microbiology and water systems research. His primary research interests encompass microbial ecology and molecular microbiology in water and solid waste systems, with a special focus on antibiotic-resistant bacteria and resistance genes in drinking water systems. Dr. Zhang has led and contributed to several major national research projects. For example, he is the principal investigator on the “Typing and Traceability System for VBNC State Pathogens of Major Digestive Tract at Ports” (2022–2025, National Key R&D Program), as well as on the “Technology and Equipment Development for Monitoring, Early Warning and Purification of Malodorous Gas Emissions under Classified Collection of Domestic Waste” (2020–2024, National Key R&D Program). Earlier, he also led work on the distribution and migration of antibiotic resistance genes at multi-phase interfaces in drinking water distribution systems (2015–2017, National Natural Science Foundation of China). To date, Dr. Zhang has authored or co-authored numerous peer-reviewed scientific publications. According to his ResearchGate profile, his publication count is 79, with more than 1,300 citations. His academic impact is further reflected by his h-index, which is listed as 5 on the SciSpace author profile. Among his representative works are: “Metagenomics analysis of antibiotic resistance genes, bacterial community and virulence factor genes of fouled filters and effluents from household water purifiers in drinking water” (Science of the Total Environment, 2023); “Global transcriptional analysis for molecular responses of Alicyclobacillus acidoterrestris spores in drinking water after low- and medium-pressure UV irradiation” (Journal of Hazardous Materials, 2024); and “Highly efficient degradation of ethanol, acetaldehyde, and ethyl acetate removal by bio-trickling filter reactors” (Process Safety and Environmental Protection, 2024). These works illustrate how he combines high-throughput molecular methods (e.g. metagenomics, transcriptional profiling) with applied engineering systems (e.g. drinking water treatment, gas emission purification) to address critical environmental microbiology challenges. Over the course of his career, Dr. Zhang has established himself as a leading scholar at the intersection of environmental engineering and microbial molecular ecology. His work not only advances fundamental understanding of microbial community dynamics and resistance gene behavior in engineered systems, but also yields practical solutions for water quality protection, public health, and waste management. His contributions are broadly recognized in China’s environmental research community and are increasingly cited in the international literature.

Profiles: Orcid

Featured Publications

Zhang, M., et al. (2025). Adsorption and desorption characteristics of nano-metal-modified zeolite for removal of oxygenated volatile organic compounds. Coatings, 15(10), 1206. https://doi.org/10.3390/coatings15101206

Jiang, J., Zhang, Y., Cui, R., Ren, L., Zhang, M., & Wang, Y. (2023). Effects of two different proportions of microbial formulations on microbial communities in kitchen waste composting. Microorganisms, 11(10), 2605. https://doi.org/10.3390/microorganisms11102605

Wang, Y., Cui, R., Jiang, H., Bai, M., Zhang, M., & Ren, L. (2022). Removal of hydrogen sulfide and ammonia using a biotrickling filter packed with modified composite filler. Processes, 10(10), 2016. https://doi.org/10.3390/pr10102016

Xu, S., Zhang, L., Lin, K., Bai, M., Wang, Y., Xu, M., Zhang, M., Zhang, C., Shi, Y., & Zhou, H. (2021). Effects of light and water disturbance on the growth of Microcystis aeruginosa and the release of algal toxins. Water Environment Research, 93, 2958–2970. https://doi.org/10.1002/wer.1644

Junxia Yu | Environmental Science | Best Researcher Award | 13493

Prof. Junxia Yu | Environmental Science | Best Researcher Award

Prof. Junxia Yu, Wuhan Institute of Technology, China

Prof. Jun-xia Yu is a distinguished researcher at the Wuhan Institute of Technology, China, affiliated with the Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry. She also serves at the Hubei Novel Reactor & Green Chemical Technology Key Laboratory and the Key Laboratory for Green Chemical Process of the Ministry of Education. Her work focuses on sustainable chemical engineering, green processes, and advanced biomass-based materials. Additionally, she is affiliated with the Hubei Three Gorges Laboratory in Yichang. Prof. Yu is based at No. 693 Xiongchu Avenue, Hongshan District, Wuhan, Hubei 430074, China.

Author Profile

Scopus

🌱 Early Academic Pursuits

Prof. Jun-xia Yu’s journey in the world of chemistry and environmental engineering began with a deep-rooted passion for scientific discovery and sustainable development. She pursued her undergraduate and postgraduate studies in chemical engineering, laying a strong foundation in process engineering, catalysis, and materials science. Her early academic years were marked by a keen interest in the transformation of biomass and the development of environmentally friendly technologies. Through rigorous training and academic excellence, she developed the skills necessary to lead advanced research in green chemical processes, eventually earning her position as a thought leader in her field.

🧪 Professional Endeavors

Currently, Prof. Jun-xia Yu is a senior faculty member at the Wuhan Institute of Technology, China. She holds a prestigious position at the School of Chemistry and Environmental Engineering and is actively involved with several key national and regional laboratories, including:

  • Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry

  • Hubei Novel Reactor & Green Chemical Technology Key Laboratory

  • Key Laboratory for Green Chemical Process of Ministry of Education

  • Hubei Three Gorges Laboratory, Yichang

Her work seamlessly integrates teaching, mentoring, and leading multidisciplinary research projects. Prof. Yu also plays a crucial role in establishing collaborative efforts between academic institutions and industry stakeholders to promote innovation in chemical technology.

🔬 Contributions and Research Focus

Prof. Yu’s research is at the forefront of green chemistry, particularly focusing on the conversion of biomasshigh-value energy and environmental materials. Her projects aim to develop novel catalysts, reactors, and processes that minimize environmental impact while maximizing efficiency.

Key areas of research include:

  • Development of biomass-based materials for environmental remediation

  • Design of green catalytic processes for energy conversion

  • Innovation in reactor technology for cleaner chemical production

  • Utilization of renewable resources in place of fossil-based inputs

Her contributions are documented in numerous high-impact scientific publications, patents, and conference presentations that continue to influence emerging trends in sustainable chemical processes.

🏆 Accolades and Recognition

Prof. Jun-xia Yu’s outstanding work has earned her recognition both nationally and internationally. She is a respected figure within the Ministry of Education’s green chemistry initiatives and regularly serves as an evaluator for various research programs. Her lab has received government funding and accolades for excellence in applied chemical research and innovation.

She is often invited to speak at global symposia and serves as a peer reviewer for reputable journals in chemistry, environmental engineering, and material sciences. Her mentorship of young researchers and postgraduates has also been widely praised.

🌍 Impact and Influence

Prof. Yu’s scientific contributions have had a significant impact on advancing China’s agenda for carbon neutrality, environmental sustainability, and clean energy development. By innovating processes that utilize renewable biomass, she helps reduce reliance on petroleum-based resources, aligning research outputs with broader climate and environmental goals.

Her collaborations with industries and government bodies have also resulted in real-world applications of laboratory research, making her work influential beyond academia. Many of her former students now hold key positions in industry, academia, and policy-making, extending her influenceo the next generation of green chemists.

💫 Legacy and Future Contributions

Prof. Jun-xia Yu’s legacy is one of scientific integrity, environmental consciousness, and tireless dedication to the advancement of green technologies. As global challenges like climate change and pollution intensify, her work serves as a beacon of innovation for sustainable development.

Looking ahead, she aims to:

  • Expand international collaborations with global research institutes

  • Explore next-generation biomass technologies for zero-emission applications

  • Train and empower a new wave of scientists dedicated to green chemistry

Her strategic role at the Hubei Three Gorges Laboratory also positions her to influence large-scale research infrastructure and regional innovation hubs focused on sustainability and energy transitions.

✍️ Publication Top Notes


📘Nano architectonics via in situ growth of MIL-101(Fe) on modified sugarcane bagasse for selective capture of glyphosate from aqueous solution

Journal: Environmental Chemical Engineering

Year: 2025