Weiguang Ran | Optical Materials | Best Researcher Award | 13659

Mr. Weiguang Ran | Optical Materials | Best Researcher Award

Qufu Normal University | China

Dr. Ran Weiguang is a distinguished young associate professor at the School of Chemistry and Chemical Engineering, Qufu Normal University, with a dynamic research agenda at the interface of inorganic functional materials and optoelectronic technology. Since joining Qufu Normal University in September 2019, Dr. Ran has made notable strides in teaching, research, and project leadership. His teaching portfolio spans courses such as Polymer Material Processing and Molding, Materials Chemistry, Physical Chemistry Experiment, and postgraduate-level literature analysis and industrial analytical technologies. In research, Dr. Ran’s interests are both deep and broad: he leads in the design and performance regulation of inorganic luminescent materials (including rare-earth and non-rare-earth phosphors), the development of LED lighting and display devices (narrow-band phosphors, efficient emitters), optical temperature sensing (ratiometric and near-infrared upconversion sensors), green synthesis and scale-up of organic small molecules, and wet electronic chemical materials—including applications in industrial wastewater treatment. Regarding scholarly output, Dr. Ran maintains a robust publication record. He has accumulated approximately 2233 citations by 1842 documents and achieved an h-index of 29. This reflects his strong influence across his work, especially as a relatively young researcher. Many of his publications appear in high-impact venues, contributing significantly to the fields of luminescent materials and optoelectronic devices. His portfolio demonstrates both depth—through targeted work on functional luminescent systems—and breadth—spanning synthesis, scale-up, device integration, and environmental applications. In the trajectory of his career, Dr. Ran Weiguang stands out for his balanced integration of fundamental materials science, device engineering, and applied environmental technologies. His ability to straddle multiple domains—optics, materials chemistry, environmental science—reflects maturity beyond his years. With substantial funding success, a growing citation footprint, and an expanding scope of research challenges ahead, Dr. Ran is well positioned to emerge as a leading international figure in functional materials and optoelectronics.

Profiles: ScopusOrcid

Featured Publications

Ran, W., Zhang, Z., Wang, F., Jiang, H., Shao, Y., Ma, X., Geng, J., & Yan, T. (2025). Theoretical and experimental investigation of BaY₂(MoO₄)₄:xSm³⁺ phosphors. Journal of Luminescence, 277, 120968.

Ran, W., Geng, J., Zhou, Z., Zhou, C., Wang, F., Zhao, M., & Yan, T. (2024). Narrow-band green phosphor RbK₂Na(Li₃SiO₄)₄:Eu²⁺ with excellent thermal stability and high efficiency for wide color gamut displays. Journal of Materials Chemistry C, 12(47), 19148–19155.

Zhang, Z., Ran, W., Wang, F., Jiang, H., & Yan, T. (2024). Enhancement of photoluminescence properties in Na⁺ doped K₂BaPO₄F:Sm³⁺ phosphors. Ceramics International, 50(3, Part B), 5614–5623.

Ran, W., Zhang, Z., Ma, X., Shao, Y., Wang, F., Jiang, H., Gong, W., Guan, K., & Yan, T. (2024). Small Stokes shift and high thermostability in Ce³⁺ doped K₂BaPO₄F phosphors. Materials Research Bulletin, 170, 112574.

Song, M., Zhou, W., Wang, J., Wang, M., Zhao, J., & Ran, W. (2024). Full color luminescence and high efficient optical thermometric performance of Eu³⁺ and Sm³⁺ in self-activated Na₂LuMg₂V₃O₁₂ garnet. Journal of Rare Earths. Advance online publication.

Ran, W., Zhang, Z., Ma, X., Sun, G., & Yan, T. (2023). A novel optical temperature sensor based on Boltzmann function in BiZn₂PO₆ phosphor. Journal of Luminescence, 255, 119562.

 

 

Yan Wang | Sustainable Materials | Best Researcher Award

Assoc Prof Dr. Yan Wang | Sustainable Materials | Best Researcher Award 

Assoc Prof Dr. Yan Wang, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China

Assoc. Prof. Dr. Yan Wang, a dedicated researcher at the Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, specializes in advanced oxidation processes for water treatment. With over a decade of expertise, she has led innovations in catalytic materials, environmental functional membranes, and contaminant removal technologies. She has authored over 40 SCI-indexed publications, holds 8 patents, and actively collaborates on national projects focused on wastewater reclamation. Dr. Wang’s impactful contributions have earned her prestigious honors, including the IWA China Star Program Member and multiple national science awards, reinforcing her role as a key figure in sustainable water treatment research.

Author Profile

Scopus

🎓 Early Academic Pursuits

Dr. Yan Wang embarked on her academic journey with a deep-rooted passion for environmental science and sustainability. She pursued her doctoral degree at Shandong University, where she laid the foundation for her future in eco-environmental research. Her early academic focus on chemistry and materials science seamlessly blended with environmental applications, particularly in the realm of water treatment. This strong academic preparation not only shaped her scientific perspective but also inspired her to delve into the complex challenges facing global water systems.

In 2015, following her Ph.D., she joined the Research Center for Eco-Environmental Sciences (RCEES), Chinese Academy of Sciences—one of China’s most prestigious environmental research institutions. This marked the beginning of a prolific research career dedicated to solving pressing water contamination issues through scientific innovation.

🧪 Professional Endeavors

Currently serving as an Associate Researcher and Master’s Supervisor at RCEES, Dr. Wang has cultivated an impressive research portfolio that includes:

  • 12 completed/ongoing projects

  • 40+ high-impact publications in SCI/Scopus-indexed journals

  • 8 patents (published/under process)

  • 1 authored book

  • 2 consultancy/industry collaborations

Her editorial contributions are notable as well, holding roles such as Guest Editor and Editorial Board Member for the journal Water Emerging Contaminants & Nanoplastics, showcasing her thought leadership in the field.

Dr. Wang is a key contributor to the National Natural Science Foundation of China-funded project: “Strengthening mechanism in wastewater reclamation by multiple micro-interface processes and water quality risk control,” where she designs novel materials for water remediation systems.

🧬 Contributions and Research Focus

Over the past decade, Dr. Wang has established herself as a prominent expert in advanced oxidation processes (AOPs), specializing in:

  • Development of environmental functional materials

  • Catalytic mechanisms for photo/electrochemical and Fenton-like systems

  • Removal of emerging contaminants and nanoplastics from water

A hallmark of her research is the development of self-supporting catalytic membranes via an in-situ synthesis approach—an innovation that enhances the stability and reusability of catalysts used in water treatment. Furthermore, she proposed a pioneering strategy to promote the regeneration of Fe(Ⅱ) from Fe(Ⅲ), addressing a long-standing limitation in Fenton catalytic cycles.

With an H-index of 27 (Web of Science), her research is both scientifically impactful and practically applicable, often bridging the gap between laboratory findings and real-world water purification systems.

🏆 Accolades and Recognition

Dr. Wang’s outstanding work has earned her national and international recognition, including:

  • IWA China Young Committee Member & Star Program Member

  • First Prize – Science and Technology Award, China Surface Engineering Association

  • Second Prize – Scientific and Technological Progress Award, Ministry of Environmental Protection

Her association with esteemed organizations like the International Water Association (IWA) and the Beijing Ecological Restoration Society further highlights her commitment to both the scientific community and sustainable development goals.

🌍 Impact and Influence

Dr. Wang’s influence extends beyond academia. Through collaborative partnerships with environmental companies, several of her technologies have been successfully commercialized and applied in water treatment plants across China. Her work not only contributes to improving water quality but also plays a critical role in shaping policy and best practices for water sustainability.

Her mentorship of graduate students fosters the next generation of eco-environmental scientists, and her editorial involvement ensures the advancement of scientific discourse on water contamination and remediation.

🔮 Legacy and Future Contributions

Looking ahead, Dr. Yan Wang aims to lead transformative projects that address climate-adaptive water purification, nanomaterials for pollutant capture, and low-energy AOP systems. Her future research will likely focus on risk assessment and quality control frameworks for wastewater reuse, crucial for achieving circular water economies.

With her proven track record and visionary outlook, Dr. Wang is well-positioned to become a global leader in eco-environmental innovation, with a legacy grounded in scientific excellence, environmental impact, and public health protection.

✍️Publication Top Notes


📘 Ozone Reactions with Olefins and Alkynes: Kinetics, Activation Energies, and Mechanisms

Author: Yan Wang, Eva M. Rodríguez, Daniel Rentsch, Zhimin Qiang, Urs von Gunten

Journal: Physico-Chemical Treatment and Resource Recovery

Year: 2025


📘Synergistic photogeneration of reactive oxygen species by Fe species self-deposited on resorcinol-formaldehyde towards the degradation of phenols under visible light

Author: Wenxiang Ji, Huiyu Dong, Yan Wang, Zhimin Qiang

Journal: Chemosphere

Year: 2024