Yonas Gezahegn | Engineering | Best Researcher Award

Dr. Yonas Gezahegn | Engineering | Best Researcher Award

Nestle Purina/Washington State University | United States

Dr. Yonas A. Gezahegn is a distinguished research and development engineer specializing in thermal and food process engineering, with extensive expertise in microwave-assisted thermal sterilization and pasteurization, heat and mass transfer, biochemical engineering, and food safety. With over 15 years of academic and industry experience, Dr. Gezahegn has developed a strong reputation for integrating engineering principles with advanced experimental and computational methods to optimize food processing and thermal treatment technologies. His research bridges the gap between fundamental engineering science and industrial applications, ensuring both efficiency and safety in food production systems. Dr. Gezahegn’s academic training includes a PhD in Biological Systems Engineering (Food Engineering) from Washington State University, where he focused on optimization of microwave-assisted thermal sterilization and pasteurization processes using analytical models and computer simulations. His prior degrees include a Master’s in Chemical Engineering from Addis Ababa University, and a Bachelor’s in Food and Biochemical Technology from Bahir Dar University, where his research addressed critical challenges in oil and fat extraction, fermentation, and food quality assessment. Currently serving as R&D Process Engineer – Thermal Process Expert at Nestle Purina, Dr. Gezahegn leads projects on process improvement, thermal sterilization validation, and retort commissioning for low-acid and acidified food products. He has successfully managed large-scale research projects, including microwave-assisted thermal processing of breaded meats, temperature distribution studies, and process optimization for commercial food production. His work also encompasses pilot-plant scale-up, analytical characterization, and data-driven modeling to ensure precise control of thermal processing conditions. Dr. Gezahegn has published over 12 peer-reviewed journal articles in top-tier journals, including the Journal of Food Engineering, Current Research in Food Science, Innovative Food Science & Emerging Technologies, Food Science and Nutrition, and LWT – Food Science and Technology. His publications focus on microwave-assisted processing, dielectric properties of foods, thermal pasteurization optimization, and oil extraction technologies. Notably, his research has led to multiple patents, including a utility model for screw expeller-based shea butter extraction and pending patents on gluten-free pizza crust and crispy breaded food processes. His work has been widely cited in the food engineering and process optimization communities, highlighting his influence in both academic and industrial research. In addition to research, Dr. Gezahegn has contributed extensively to industry-academic collaborations, securing competitive grants such as the USDA-NIFA and WSU Hatch projects totaling over USD 4 million, and Ethiopian national projects on drying and fermentation of plant-based products. Dr. Gezahegn published 12+ peer-reviewed articles, 550 Citations and 10 H-index.  His projects integrate  analytical modeling, simulation, experimental validation, and process design to improve efficiency, safety, and nutritional quality in food production. Dr. Gezahegn has served as a reviewer for journals including Applied Food Research, Journal of Food Engineering, and the International Journal for Vitamin and Nutrition Research, reflecting his standing in the research community. His leadership extends to professional societies, including IFT, IMPI, SoFE, and ASABE, and he has held roles such as President of the Food Engineering Club and departmental representative in the Graduate and Professional Student Association. Overall, Dr. Gezahegn’s work demonstrates a sustained commitment to advancing food engineering, thermal process optimization, and industrial innovation, making significant contributions to improving food safety, process efficiency, and product quality. His research portfolio combines rigorous academic scholarship with practical applications, establishing him as a leading expert in thermal food processing and microwave-assisted sterilization technologies.

Profiles: Scopus | Orcid

Featured Publications

Gezahegn, Y., Tang, J., et al. (2024). Development and validation of engineering charts: Heating time and optimal salt content prediction for microwave assisted thermal sterilization. Journal of Food Engineering, 369, 111909. https://doi.org/10.1016/j.jfoodeng.2023.111909

Gezahegn, Y., Yoon-Ki, H., Tang, J., et al. (2023). Development and validation of analytical charts for microwave assisted thermal pasteurization of selected food products. Journal of Food Engineering, 349, 111434. https://doi.org/10.1016/j.jfoodeng.2023.111434

Zhou, X., Gezahegn, Y., et al. (2023). Theoretical reasons for rapid heating of vegetable oils by microwaves. Current Research in Food Science, 7, 100641. https://doi.org/10.1016/j.crfs.2023.100641

Gezahegn, Y., Tang, J., Sablani, S., et al. (2021). Dielectric properties of water relevant to microwave assisted thermal pasteurization and sterilization of packaged foods. Innovative Food Science & Emerging Technologies, 74, 102837. https://doi.org/10.1016/j.ifset.2021.102837

Gezahegn, Y., Emire, S., & Asfaw, S. (2016). Optimization of Shea (Vitellaria paradoxa) butter quality using screw expeller extraction. Food Science & Nutrition, 4(6), 840–847. https://doi.org/10.1002/fsn3.351

Gezahegn, Y., Emire, S., & Asfaw, S. (2016). Effect of processing factors on Shea (Vitellaria paradoxa) butter extraction. LWT – Food Science and Technology, 66, 172–178. https://doi.org/10.1016/j.lwt.2015.10.036

 

Sadegh Kaviani | Renewable Energy Technologies | Best Researcher Award

Sadegh Kaviani | Renewable Energy Technologies | Best Researcher Award

A.B. Nalbandyan Institute of Chemical Physics, National Academy of Sciences | Armenia 

Dr. Sadegh Kaviani is an accomplished computational chemist and postdoctoral researcher at the A.B. Nalbandyan Institute of Chemical Physics, National Academy of Sciences of Armenia. His research expertise lies in computational materials science, where he employs density functional theory (DFT), molecular dynamics (MD), and machine learning (ML) to explore, predict, and optimize advanced nanomaterials for energy storage, catalysis, and solar energy conversion. With a strong interdisciplinary background, he bridges theoretical modeling with practical material applications aimed at addressing the world’s growing energy and environmental challenges. Dr. Kaviani earned his Ph.D. in Physical Chemistry and has previously worked as a postdoctoral researcher at Kazan Federal University (Russia), contributing to pioneering studies on solid-state and hybrid electrolytes. His current work at the National Academy of Sciences of Armenia focuses on solid polymer electrolytes, covalent organic frameworks (COFs), perovskite solar cells, and ionic liquids, integrating AI-based predictive tools to design efficient and sustainable energy materials. Throughout his career, Dr. Kaviani has demonstrated outstanding research productivity and impact. He has authored or co-authored over 64 peer-reviewed journal publications in high-impact international journals indexed in SCI, Scopus, and Web of Science. His scholarly work has attracted more than 1,000 citations, achieving an h-index of 18 and an i10-index of 49 (as per Google Scholar). This citation record reflects both the quality and global relevance of his contributions to computational chemistry and materials science. He has also published one book (ISBN-registered) that synthesizes theoretical advances in the modeling of functional materials for energy applications. Dr. Kaviani’s research portfolio includes three major completed and ongoing projects, focusing on the atomistic understanding of ion transport, interfacial stability, and energy conversion mechanisms. His innovative studies on COF-based polymer electrolytes and ionic-liquid-assisted perovskite interfaces have opened new pathways for the design of high-performance batteries and solar devices. His integrative modeling approach has set new standards for computational evaluation of hybrid materials, combining quantum chemistry with data-driven optimization. Beyond research, Dr. Kaviani actively contributes to the scientific community as an Editorial Board Member for Theoretical Physics and Quantum Mechanics (Hill Publishing) and as a peer reviewer for more than 45 international journals, having completed over 150 reviews. He also collaborates internationally with researchers from China, India, Mexico, and South Africa, promoting global scientific exchange. A passionate advocate for computational innovation in sustainable technologies, Dr. Sadegh Kaviani stands out as a researcher whose academic excellence, integrity, and innovation continue to influence the next generation of material scientists. His record of productivity, international collaboration, and scientific service makes him a deserving nominee for the Best Researcher Award under the International Research Awards 2025.

Profiles: Orcid | Google Scholar

Featured Publications

Kaviani, S. (2025). Covalent organic framework-based solid polymer electrolytes for metal-ion batteries: Pioneering the future of DFT, MD, and ML techniques. Energy Storage Materials. https://doi.org/10.1016/j.ensm.2025.104671

Kaviani, S. (2025). Enhanced anodic performance of CTF0 monolayer for Li-ion batteries through F and Si co-doping: A DFT insight. Colloids and Surfaces A: Physicochemical and Engineering Aspects. https://doi.org/10.1016/j.colsurfa.2024.135752

Kaviani, S. (2025). A DFT study on an 18-crown-6-like-N8 structure as a material for metal ion storage: Stability and performance. Sustainable Energy & Fuels. https://doi.org/10.1039/D5SE00333D

Kaviani, S. (2025). Improving excited-state dynamic properties with the help of metalide character and excess electrons: Earlier transition-metal pairing with superalkali clusters. New Journal of Chemistry. https://doi.org/10.1039/D5NJ00827A

Kaviani, S. (2025). Stacking interactions in stabilizing supramolecular assembly of M[9C]₂M complexes: Dynamic stability with remarkable nonlinear optical features. Physical Chemistry Chemical Physics. https://doi.org/10.1039/D4CP04052J

Kaviani, S. (2024). A DFT modeling of 4-cyclohexene-1,3-dione embedded in covalent triazine framework as a stable anode material for Li-ion batteries. Materials Chemistry and Physics. https://doi.org/10.1016/j.matchemphys.2024.129592

Kaviani, S. (2024). A DFT-based design of B/N/P-co-doped oxo-triarylmethyl as a robust anode material for magnesium-ion batteries. Journal of Power Sources. https://doi.org/10.1016/j.jpowsour.2024.234425

Kaviani, S. (2022). First-principles study of the binding affinity of monolayer BC6N nanosheet: Implications for drug delivery. Materials Chemistry and Physics. https://doi.org/10.1016/j.matchemphys.2021.125375

 

 

JosephIkechukwu Nwachukwu | Pollution Control Technology | Best Researcher Award

Dr.JosephIkechukwu Nwachukwu | Pollution Control Technology | Best Researcher Award

Federal University of Technology, Owerri | Nigeria

Profile: orcid

Dr. Joseph Ikechukwu Nwachukwu is an early career environmental scientist and Senior Lecturer at the Federal University of Technology, Owerri (FUTO), Nigeria, specializing in climate adaptation, water quality, contaminant exposure, and geospatial analysis. Holding a PhD in Environmental Sciences from Manchester Metropolitan University, his doctoral work employed geospatial exposure pathways to chemical pollutants in soils, water, and sediments around Owerri. His research spans human exposure to heavy metals in food crops, groundwater nitrification in urban contexts, and innovative training in geospatial intelligence for environmental monitoring. Beyond research, Dr. Nwachukwu has extensive experience teaching courses in environmental chemistry, hydrology, impact assessment, and geospatial techniques, and he supervises undergraduate and graduate research projects. He serves as Deputy Director of the Centre for Waste to Wealth Research & Development at FUTO, and as Postgraduate Coordinator in his department, where he promotes interdisciplinary, data-driven approaches to environmental challenges in Sub-Saharan Africa. His awards include the TETFund Fellowship for doctoral study, and national grants for developing nanoadsorbents for industrial wastewater remediation. Driven by a commitment to integrate science and policy, Dr. Nwachukwu is consolidating his profile toward leadership in environmental resilience, contamination mitigation, and sustainable water resource governance.

Featured publications

Nwachukwu, J. I., et al. (2024). Assessment of groundwater contamination by effluent discharged PAH at NNPC Depot in Osisioma, Nigeria. Waste Management Bulletin, 2(1), 229–238.

Nwachukwu, J. I., et al. (2022). Assessment of human exposure to food crops contaminated with lead and cadmium in Owerri, South-eastern Nigeria. Journal of Trace Elements and Minerals.

Nwachukwu, J. I., et al. (2019, August). Urbanization impacts on groundwater nitrification and health: A case study of Owerri, Southeast Nigeria. Paper presented at the 29th Annual Goldschmidt Conference, Barcelona, Spain.

William Gardner | Engineering | Best Researcher Award

Prof. William Gardner | Engineering | Best Researcher Award 

University of California, Davis | United States

Dr. William A. Gardner is an esteemed scholar and pioneer in statistical signal processing, particularly renowned for his foundational contributions to cyclostationary signal processing theory and methods. His postsecondary education began with a Certificate in Aircraft Radio Repair (1961) at Keesler Air Force Base, followed by coursework in electronics and electrical engineering at Foothill College and Stanford University, where he earned his M.S. in Electrical Engineering (1967). He pursued further graduate studies at MIT and Bell Labs, and earned his Ph.D. in Electrical Engineering from the University of Massachusetts Amherst (1972). Dr. Gardner joined the University of California, Davis in 1972, where he advanced to Professor VII before becoming Professor Emeritus in 2001. Over his career, he supervised numerous M.S. and Ph.D. theses focused on statistical signal processing, especially the exploitation of cyclostationarity in communications and signals intelligence. In 1986, Dr. Gardner founded Statistical Signal Processing, Inc. (SSPI), a private research firm dedicated to advanced algorithm development for radio reconnaissance, signals intelligence, and cellular communications. The firm, which operated for 25 years, licensed its technologies to major corporations including Apple Inc. and Lockheed Martin. Post-retirement, he continued research collaborations—most notably with Prof. Antonio Napolitano—on advanced statistical cyclicity and nonstationary signal behavior. His recent work has expanded into electromagnetic modeling of cosmic plasma and laboratory-confined plasma, supporting paradigm-challenging efforts such as the Plasma Universe, Thunderbolts Project, and the SAFIRE Project, all aimed at redefining astrophysical theory and clean energy generation. Dr. Gardner is the author of four influential books, including Introduction to Random Processes and Statistical Spectral Analysis, and editor of Cyclostationarity in Communications and Signal Processing. He has contributed chapters to five other books, authored or co-authored over 110 peer-reviewed journal papers, and holds 15 U.S. patents. His academic impact is reflected in a citation count exceeding 7489, an h-index of 33, and continued recognition for shaping the theoretical underpinnings of modern signal processing. He has delivered invited lectures globally and remains a thought leader across academia, industry, and emerging scientific paradigms.

Profiles:  Scopus | Orcid | Google Scholar

Featured Publications

Gardner, W. A. (2002). Exploitation of spectral redundancy in cyclostationary signals. IEEE Signal Processing Magazine, 8(2), 14–36.

Gardner, W. A. (1990). Introduction to random processes: With applications to signals and systems. McGraw-Hill.

Gardner, W. A., Napolitano, A., & Paura, L. (2006). Cyclostationarity: Half a century of research. Signal Processing, 86(4), 639–697.

Gardner, W. A., & Robinson, E. A. (1989). Statistical spectral analysis—A nonprobabilistic theory. Prentice-Hall.

Gardner, W. A. (1994). Cyclostationarity in communications and signal processing. IEEE Press.

Gardner, W. A. (2002). Signal interception: A unifying theoretical framework for feature detection. IEEE Transactions on Communications, 36(8), 897–906.

Gardner, W. A., Brown, W., & Chen, C. K. (1987). Spectral correlation of modulated signals: Part II—Digital modulation. IEEE Transactions on Communications, 35(6), 595–601.

Gardner, W. A., & Franks, L. E. (1975). Characterization of cyclostationary random signal processes. IEEE Transactions on Information Theory, 21(1), 4–14.

Gardner, W. A., & Spooner, C. M. (1992). Signal interception: Performance advantages of cyclic-feature detectors. IEEE Transactions on Communications, 40(1), 149–159.

Ning Chen | Engineering | Best Researcher Award | 13558

Mr. Ning Chen | Engineering | Best Researcher Award

Mr. Ning Chen, Shandong University of Science and Technology, China

Mr. Ning Chen, Lecturer at Shandong University of Science and Technology, China, is an emerging researcher in high-precision mechatronic systems. With a Ph.D. in mechanical engineering and prior industry experience, he has developed innovative piezoelectric galvanometers, stiffness-adjustable servo systems, and micro-nano motion platforms. His work is shaping the future of laser positioning, scanning, and ultra-precision control technologies. Backed by prestigious national and provincial research grants, Mr. Chen exemplifies academic excellence and practical innovation in mechanical and precision engineering.

Author Profile

Orcid

Education

Dr. Weijian Wang embarked on his academic journey with a solid foundation in chemical sciences. He earned his Bachelor’s degree in Chemical Engineering and Technology from the China University of Petroleum (East China)—an institution known for producing talent in energy and chemical sectors. His academic excellence and growing passion for applied chemical research led him to pursue a Master’s degree in Chemical Engineering at the China University of Mining and Technology, where he deepened his understanding of reaction engineering, process modeling, and advanced materials.

Eager to contribute to cutting-edge innovation in the energy sector, Dr. Wang pursued his Ph.D. in Chemical Technology at the Research Institute of Petroleum Processing (RIPP), Sinopec, one of China’s leading industrial research institutions. His doctoral training provided him with hands-on experience in industrial-scale research, advanced materials development, and interdisciplinary collaboration. To further strengthen his academic and research profile, Dr. Wang completed a postdoctoral fellowship at Zhejiang University, where he explored emerging materials and device applications, preparing him for a career at the intersection of academia and applied science.

Experience

In 2022, Dr. Wang joined Beibu Gulf University as an Associate Professor, where he has since led a promising research group focusing on halide perovskite materials. As a faculty member, he has embraced both teaching and research, mentoring students while pursuing innovative solutions to modern energy and optoelectronic challenges.

One of his key professional milestones includes leading the Guangxi Science and Technology Major Program (GuikeAA23062016). This ambitious research initiative demonstrates his leadership and technical capability in managing multi-disciplinary projects aligned with regional and national scientific goals. With no industry consultancies yet, Dr. Wang remains fully invested in academic research, pushing boundaries in materials science through both simulations and experimental designs.

Research Focus

Dr. Weijian Wang’s research is centered on the green synthesis and application of halide perovskite materials, a rapidly evolving class of compounds celebrated for their extraordinary optoelectronic properties. These materials are particularly promising in fields such as solar energy conversion, light-emitting diodes (LEDs), and medical bioimaging. At the heart of Dr. Wang’s innovation is the drive for sustainability. He has developed eco-friendly synthesis techniques that minimize environmental harm while maintaining material performance, advancing the goal of sustainable science. 🌱

In the field of perovskite solar cells, Dr. Wang employs simulation-assisted design methodologies to enhance energy conversion efficiency. His designs have led to devices with superior performance characteristics, addressing one of the key challenges in renewable energy technology. 🌞 Beyond energy, his research also extends to optoelectronic devices, including perovskite-based LEDs and imaging systems with applications in healthcare diagnostics and bioimaging. 💡

Dr. Wang’s robust scientific output includes 11 peer-reviewed publications in internationally recognized SCI-indexed journals, with eight authored as first or corresponding author. Additionally, he has secured 15 authorized invention patents as the primary inventor, underscoring his capacity to translate theoretical research into tangible technological innovations.

Award and Recognition

Despite being in the early stages of his academic journey, Dr. Wang has already built a strong research profile distinguished by originality, technical rigor, and innovation. His contributions have earned him 11 published articles in high-impact SCI-indexed journals, demonstrating both quality and consistency in scientific communication. 📚

Dr. Wang also holds 15 authorized invention patents, a notable achievement that reflects his focus on applied research and technology transfer. 🧾 These patents not only reinforce his expertise in halide perovskite materials but also highlight his dedication to practical solutions for global energy and environmental challenges.

Further elevating his academic standing, Dr. Wang currently leads a major government-funded research program, indicating trust in his leadership and vision at the national level. 💼 His H-index of 5 signifies an increasing impact within the scholarly community, with a trajectory that suggests sustained and growing influence in the years to come.

Although he does not yet hold editorial roles or memberships in professional societies, his impressive publication and patent record mark him as a promising figure in materials science. His career is on a path toward broader recognition, leadership roles, and continued contributions to the scientific community.

Publications

📖 A Semi-analytical Method for Vibro-Acoustic Properties of Functionally Graded Porous Piezoelectric Annular Plates with Cavity – Journal of Vibration Engineering and Technologies (2025).
📖 Enhancing the motion performance of 3-DOF micro/nano-manipulators facing thermo-piezoelectric-mechanical coupling effects – Sensors and Actuators A Physical (2025)
📖 Robust control of uncertain asymmetric hysteretic nonlinear systems with adaptive neural network disturbance observer – Applied Soft Computing (2024)
📖 Low thermal budget lead zirconate titanate thick films integrated on Si for piezo-MEMS applications – Microelectronic Engineering (2020)

 

 

 

Yan Wang | Sustainable Materials | Best Researcher Award

Assoc Prof Dr. Yan Wang | Sustainable Materials | Best Researcher Award 

Assoc Prof Dr. Yan Wang, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China

Assoc. Prof. Dr. Yan Wang, a dedicated researcher at the Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, specializes in advanced oxidation processes for water treatment. With over a decade of expertise, she has led innovations in catalytic materials, environmental functional membranes, and contaminant removal technologies. She has authored over 40 SCI-indexed publications, holds 8 patents, and actively collaborates on national projects focused on wastewater reclamation. Dr. Wang’s impactful contributions have earned her prestigious honors, including the IWA China Star Program Member and multiple national science awards, reinforcing her role as a key figure in sustainable water treatment research.

Author Profile

Scopus

🎓 Early Academic Pursuits

Dr. Yan Wang embarked on her academic journey with a deep-rooted passion for environmental science and sustainability. She pursued her doctoral degree at Shandong University, where she laid the foundation for her future in eco-environmental research. Her early academic focus on chemistry and materials science seamlessly blended with environmental applications, particularly in the realm of water treatment. This strong academic preparation not only shaped her scientific perspective but also inspired her to delve into the complex challenges facing global water systems.

In 2015, following her Ph.D., she joined the Research Center for Eco-Environmental Sciences (RCEES), Chinese Academy of Sciences—one of China’s most prestigious environmental research institutions. This marked the beginning of a prolific research career dedicated to solving pressing water contamination issues through scientific innovation.

🧪 Professional Endeavors

Currently serving as an Associate Researcher and Master’s Supervisor at RCEES, Dr. Wang has cultivated an impressive research portfolio that includes:

  • 12 completed/ongoing projects

  • 40+ high-impact publications in SCI/Scopus-indexed journals

  • 8 patents (published/under process)

  • 1 authored book

  • 2 consultancy/industry collaborations

Her editorial contributions are notable as well, holding roles such as Guest Editor and Editorial Board Member for the journal Water Emerging Contaminants & Nanoplastics, showcasing her thought leadership in the field.

Dr. Wang is a key contributor to the National Natural Science Foundation of China-funded project: “Strengthening mechanism in wastewater reclamation by multiple micro-interface processes and water quality risk control,” where she designs novel materials for water remediation systems.

🧬 Contributions and Research Focus

Over the past decade, Dr. Wang has established herself as a prominent expert in advanced oxidation processes (AOPs), specializing in:

  • Development of environmental functional materials

  • Catalytic mechanisms for photo/electrochemical and Fenton-like systems

  • Removal of emerging contaminants and nanoplastics from water

A hallmark of her research is the development of self-supporting catalytic membranes via an in-situ synthesis approach—an innovation that enhances the stability and reusability of catalysts used in water treatment. Furthermore, she proposed a pioneering strategy to promote the regeneration of Fe(Ⅱ) from Fe(Ⅲ), addressing a long-standing limitation in Fenton catalytic cycles.

With an H-index of 27 (Web of Science), her research is both scientifically impactful and practically applicable, often bridging the gap between laboratory findings and real-world water purification systems.

🏆 Accolades and Recognition

Dr. Wang’s outstanding work has earned her national and international recognition, including:

  • IWA China Young Committee Member & Star Program Member

  • First Prize – Science and Technology Award, China Surface Engineering Association

  • Second Prize – Scientific and Technological Progress Award, Ministry of Environmental Protection

Her association with esteemed organizations like the International Water Association (IWA) and the Beijing Ecological Restoration Society further highlights her commitment to both the scientific community and sustainable development goals.

🌍 Impact and Influence

Dr. Wang’s influence extends beyond academia. Through collaborative partnerships with environmental companies, several of her technologies have been successfully commercialized and applied in water treatment plants across China. Her work not only contributes to improving water quality but also plays a critical role in shaping policy and best practices for water sustainability.

Her mentorship of graduate students fosters the next generation of eco-environmental scientists, and her editorial involvement ensures the advancement of scientific discourse on water contamination and remediation.

🔮 Legacy and Future Contributions

Looking ahead, Dr. Yan Wang aims to lead transformative projects that address climate-adaptive water purification, nanomaterials for pollutant capture, and low-energy AOP systems. Her future research will likely focus on risk assessment and quality control frameworks for wastewater reuse, crucial for achieving circular water economies.

With her proven track record and visionary outlook, Dr. Wang is well-positioned to become a global leader in eco-environmental innovation, with a legacy grounded in scientific excellence, environmental impact, and public health protection.

✍️Publication Top Notes


📘 Ozone Reactions with Olefins and Alkynes: Kinetics, Activation Energies, and Mechanisms

Author: Yan Wang, Eva M. Rodríguez, Daniel Rentsch, Zhimin Qiang, Urs von Gunten

Journal: Physico-Chemical Treatment and Resource Recovery

Year: 2025


📘Synergistic photogeneration of reactive oxygen species by Fe species self-deposited on resorcinol-formaldehyde towards the degradation of phenols under visible light

Author: Wenxiang Ji, Huiyu Dong, Yan Wang, Zhimin Qiang

Journal: Chemosphere

Year: 2024


 

Huafu Zhang | Renewable Energy | Best Researcher Award | 13476

Dr. Huafu Zhang | Renewable Energy | Best Researcher Award 

Dr. Huafu Zhang, Institute of Chemistry and Physics Technology, Chinese Academy of Sciences, China

Dr. Huafu Zhang, Associate Researcher at the Institute of Chemistry and Physics Technology, Chinese Academy of Sciences, is a leading innovator in heat pump technologies with a strong focus on carbon capture and energy efficiency. With over 52 granted patents, including 22 invention patents, and more than 10 high-level publications, his work has significantly advanced sustainable technologies in building heating, pharmaceuticals, and environmental protection. His contributions have led to the industrial application of over 30 systems nationwide. Notably, his leadership in the 2024 national carbon capture policy research supported China’s participation in COP29, marking a milestone in green innovation.

Author Profile

Orcid

🎓 Early Academic Pursuits

Dr. Huafu Zhang embarked on his academic journey with a focus on engineering science, which laid the groundwork for his future innovations in thermal systems and energy technologies. As a dedicated scholar, he pursued advanced degrees in the realm of energy systems engineering, eventually earning his Ph.D. with a specialization in heat pump technology—an emerging and environmentally crucial field. His academic foundation was built not only on theoretical principles but also on real-world applicability, which would later define his unique research and development approach.

During his formative academic years, Dr. Zhang developed a keen interest in the intersection of thermodynamics, mechanical systems, and environmental sustainability, which naturally led him toward the research of heat pumps as a cleaner and more efficient energy solution for industrial and residential applications.

🧪 Professional Endeavors

Currently serving as an Associate Researcher and Senior Engineer at the Institute of Chemistry and Physics Technology, under the Chinese Academy of Sciences, Dr. Zhang has dedicated his professional life to advancing the frontiers of heat pump systems and their industrialization. His work has had a wide range of applications—from construction and pharmaceuticals to chemical engineering and carbon capture.

His long-term commitment to energy-saving and eco-friendly technologies has not only yielded academic results but also tangible engineering solutions that are now operational across numerous industries. Dr. Zhang has led or participated in over 10 scientific and technological research projects, and his research has been transformed into practical technologies applied by well-known enterprises such as China Jinmao, State Power Investment Corporation, and Haier.

He is also the lead implementer of the 2024 National Development and Reform Commission special project on “Research on Carbon Capture, Utilization and Storage Policies,” which laid the foundation for China’s strategic stance at the 29th Conference of the Parties (COP29) to the UN Framework Convention on Climate Change in Baku, Azerbaijan.

🔬 Contributions and Research Focus

Dr. Zhang’s research primarily focuses on heat pump technologies and their specialized industrial applications. His specific areas of expertise include:

  • 💧 Heat pump building heating systems

  • 🌬️ Mechanical vapor compression for distillation and rectification

  • 🌡️ High-temperature heat pumps for pharmaceutical applications

  • ♻️ Energy tower heat pumps and water vapor recovery systems

  • 🧪 Heat pump carbon capture solutions for CO₂ management

One of his most notable contributions is the development of mechanical vapor compression technology, which significantly improves energy efficiency, offering 30–80% savings compared to conventional systems. His work bridges theory and industrial application, demonstrating how thermal science can serve economic and environmental goals simultaneously.

Dr. Zhang has also proposed a carbon capture technology evaluation system based on net capture rates, which has helped guide the development of carbon capture technologies across various CO₂ concentrations, contributing directly to China’s climate policies and international commitments.

🏅 Accolades and Recognition

Dr. Zhang’s contributions have earned him numerous accolades, though his greatest recognition comes from the widespread industrial adoption of his technologies. With 52 granted patents—including 22 invention patents—he stands out as a prolific innovator. His authorship includes more than 10 high-impact publications as first or corresponding author and a monograph titled “Heat Pump Drying Technology and Equipment” (ISBN 978-7-122), which has become a key reference in the field.

He has also drafted two industry standards, ensuring that his innovations are translated into regulatory frameworks that benefit the broader energy sector. His work has been certified in two major technological achievement validations, reinforcing his credibility and impact.

🌍 Impact and Influence

Dr. Zhang’s technologies have been industrially applied in over 30 systems, offering scalable solutions for major Chinese enterprises. His innovations are helping shape the future of low-carbon building systems, green industrial processing, and efficient energy conversion.

His leadership in policy-related research has had national implications, particularly through his work in carbon capture and storage (CCS). The frameworks and tools he developed were instrumental in supporting China’s global climate representation at COP29, placing his contributions at the intersection of science, policy, and diplomacy.

🔮 Legacy and Future Contributions

Looking ahead, Dr. Huafu Zhang is poised to play an even more influential role in shaping China’s green energy future. His next phase of work aims to:

  • 📈 Scale up carbon capture technologies for national and global deployment

  • 🏭 Integrate heat pump systems into smart energy grids

  • 👨‍🏫 Mentor the next generation of thermal energy and environmental engineers

  • 📘 Publish further research to expand academic understanding and industrial applications

His long-term vision is aligned with China’s carbon neutrality goals and the global demand for sustainable thermal energy solutions. As a committed researcher, engineer, and innovator, Dr. Zhang’s legacy will be marked by technological transformation, policy influence, and educational leadership.

🧾Publication Top Notes


📘Experimental study and model optimization of thermodynamic performance of a single screw water vapor compressor

Author: Huafu Zhang; Zhentao Zhang; Lige Tong; Junling Yang; Yanan Li; Li Wang; Xia Guo; Rui Tian; Mingxin He; Chongguang Gao

Journal: International Journal of Refrigeration

Year: 2024

📘A integrated mechanical vapor compression enrichment system of radioactive wastewater: Experimental study, model optimization and performance prediction

Author: Huafu Zhang; Lige Tong; Zhentao Zhang; Yanchang Song; Junling Yang; Yunkai Yue; Zhenqun Wu; Youdong Wang; Ze Yu; Junhao Zhang

Journal: Energy

Year: 2023


Dandan Zhu | Engineering | Best Researcher Award

Assoc. Prof. Dr. Dandan Zhu | Engineering | Best Researcher Award

Assoc. Prof. Dr. Dandan Zhu,China University of Petroleum, Beijing,China

Dr. Dandan Zhu, Associate Professor at China University of Petroleum, Beijing, is a leading researcher in integrating artificial intelligence with petroleum engineering. Her work on intelligent drilling technologies and real-time trajectory control has advanced automation in complex subsurface environments. With over 40 research projects, 39 journal publications, and multiple patents, she bridges theory and field application. Her innovative learning frameworks and strong industry collaborations have significantly contributed to the development of smart drilling systems, reinforcing her candidacy for the Best Researcher Award.

Author Profile

Google  Scholar

🎓 Early Academic Pursuits

Dr. Dandan Zhu’s academic journey reflects a deep-rooted passion for engineering and innovation. Her pursuit of excellence began at Beihang University, one of China’s leading institutions in aerospace and engineering, where she earned her Master’s degree in Aircraft Design. This foundational training laid the groundwork for her precision-oriented approach and problem-solving mindset. Driven by a keen interest in cutting-edge technologies and global research exposure, she went on to pursue a Ph.D. in Precision Engineering at the University of Tokyo, Japan. Her doctoral research refined her expertise in high-accuracy systems and complex mechanical processes—skills that would later fuel her contributions in artificial intelligence (AI) and petroleum engineering.

🧑‍💼 Professional Endeavors

Since 2015, Dr. Zhu has served as an Associate Professor at the College of Artificial Intelligence, China University of Petroleum, Beijing (CUPB). In this role, she has emerged as a thought leader and mentor in the field of intelligent energy systems. Her work involves teaching, supervising postgraduate students, and leading several high-impact research initiatives. Dr. Zhu has also built a bridge between academia and industry by actively participating in national-level science and technology programs, NSFC–enterprise joint funding projects, and technical consultations with leading energy companies. Her professional portfolio boasts 40 completed and ongoing research projects and 27 consultancy or industry-driven assignments. These efforts are deeply rooted in real-world challenges, ensuring that her research not only advances academic knowledge but also meets the evolving demands of energy exploration and production sectors.

🧠 Contributions and Research Focus

Dr. Zhu’s core research area lies at the intersection of artificial intelligence and petroleum engineering. Her pioneering work focuses on intelligent drilling systems, real-time wellbore trajectory control, reinforcement learning, and geological modeling. She has developed a robust learning framework that combines offline training, real-time geosteering decision-making, and post-drilling strategy optimization. By leveraging reinforcement learning algorithms and generative simulation environments, Dr. Zhu’s research enhances the adaptability and robustness of drilling operations in geologically uncertain environments. Her research contributions extend beyond theory. Integrated software platforms developed under her leadership have been field-tested in collaboration with major Chinese oil and gas companies, such as CNPC, Sinopec, and CNOOC. These platforms facilitate intelligent automation in subsurface operations, ensuring improved safety, efficiency, and cost-effectiveness.

🏅 Accolades and Recognition

Although Dr. Zhu maintains a modest public profile, her work has earned substantial recognition within academic and professional circles. She has authored 39 papers in reputed journals indexed by SCI and Scopus, and her publications have collectively received over 60 citations since 2020—a testament to their relevance and influence. Her book, published under ISBN: 978-7-3025-3524-9, further underscores her authority in the domain of intelligent drilling technologies. She holds five patents, reflecting her commitment to innovation and practical impact. While she has not yet served on editorial boards, her active participation in international conferences and professional associations such as IEEE, ACM, and SPE demonstrates her ongoing contribution to the global scientific community through peer review and scholarly discourse.

🌍 Impact and Influence

Dr. Zhu’s interdisciplinary collaborations have significantly influenced both academia and industry. Her work has helped develop more intelligent, data-driven petroleum engineering systems, contributing to the broader push for digital transformation in energy exploration. Through partnerships with research institutions and enterprises, she has been instrumental in advancing the application of AI in areas such as hydraulic fracturing, electromagnetic exploration, and 3D geological visualization. Beyond technical outcomes, her projects have delivered impactful results such as enhanced resource recovery, reduced environmental impact, and optimized operational costs—outcomes highly valued by industrial stakeholders. Furthermore, her mentorship of students and young researchers ensures the continuity of innovation and excellence in the field.

🔮 Legacy and Future Contributions

Looking forward, Dr. Zhu is poised to further advance the integration of AI with traditional engineering practices. Her vision includes the development of autonomous drilling systems that can self-optimize and self-correct in real time, even in highly unpredictable geological conditions. She also plans to expand research into simulation-based control frameworks and digital twins, providing a virtual testing ground for future subsurface technologies. With her continued dedication, Dr. Zhu is expected to leave a lasting legacy as a trailblazer in intelligent energy systems. She not only represents the new era of AI-driven engineering but also serves as an inspiration for the next generation of researchers aiming to solve the world’s most pressing energy challenges.

✍️Publication Top Notes


📘End-to-end multiplayer violence detection based on deep 3D CNN

Author: C Li, L Zhu, D Zhu, J Chen, Z Pan, X Li, B Wang

Journal: international conference on network …

Year: 2018


📘PPS-QMIX: Periodically Parameter Sharing for Accelerating Convergence of Multi-Agent Reinforcement Learning

Author: K Zhang, DD Zhu, Q Xu, H Zhou, C Zheng

Journal: international conference on network …arXiv preprint arXiv:2403.02635

Year:  2024


📘An intelligent drilling guide algorithm design framework based on high interactive learning mechanism

Author: Y Zhao, DD Zhu, F Wang, XP Dai, HS Jiao, ZJ Zhou

Journal: Petroleum Science

Year:  2025

Dayeong An | Engineering | Women Researcher Award | 13446

Dr. Dayeong An | Engineering | Women Researcher Award

Dr. Dayeong An, Medical College of Wisconsin, United States

Dr. Dana (Dayeong) An is a Postdoctoral Fellow in the Department of Radiology at Northwestern University with a strong interdisciplinary background in biomedical engineering, computational sciences, and statistics. Her research focuses on machine learning and probabilistic modeling for multimodal biomedical data integration, particularly in neurovascular and cardiac imaging. She has developed advanced AI frameworks for stroke outcome prediction, perfusion analysis, and cardiac strain estimation. With multiple peer-reviewed publications and awards, Dr. An brings expertise in deep learning, medical image processing, and translational AI for precision medicine.

Profile

ORCID

🎓 Early Academic Pursuits

Dr. Dana (Dayeong) An’s academic journey is rooted in a solid foundation of mathematics, statistics, and computational sciences. She began her higher education at Minnesota State University, earning a B.S. in Mathematics with a minor in Economics in 2012. Her strong mathematical background laid the groundwork for advanced study, leading her to pursue dual M.S. degrees in Mathematics and Statistics (2014) and Computational Sciences (2018). These degrees reflect a growing interest in data analysis, modeling, and algorithmic thinking—skills that would become central to her future research. Her academic path culminated in a Ph.D. in Biomedical Engineering from the Medical College of Wisconsin in 2024. During her doctoral training, Dr. An fused her analytical skills with biomedical applications, working at the intersection of medical imaging and machine learning. Her education reflects a rare combination of quantitative rigor and domain-specific insight, enabling her to tackle complex problems in healthcare and precision medicine.

🧠 Professional Endeavors

Dr. An currently serves as a Postdoctoral Fellow in the Department of Radiology at Northwestern University, where she applies advanced machine learning techniques to neurovascular and cardiac imaging data. Her professional roles have spanned research, teaching, and clinical applications. At the Medical College of Wisconsin, she worked as a Research Assistant, refining deep learning algorithms for myocardial strain analysis, MRI-based diagnostics, and experimental studies on cardiotoxicity in animal models. Earlier in her career, she served as an Adjunct Professor and Teaching Assistant at multiple institutions, including Marquette University, Globe University, and South Central College, where she taught a variety of math and statistics courses. This teaching experience showcases her commitment to education and her ability to communicate complex topics to diverse audiences.

🧪 Contributions and Research Focus

Dr. An’s research is centered on machine learning and probabilistic modeling for multimodal biomedical data integration. Her contributions span multiple domains:

  • Neurovascular Imaging: She has developed frameworks using Bayesian priors and transformer models to estimate physiological parameters from perfusion MRI data. She also works with large-scale databases such as NVQI-QOD to predict stroke outcomes and recurrence risks in intracranial atherosclerotic disease (ICAD).

  • Cardiac MRI and Strain Analysis: Dr. An fine-tuned U-Net and GAN architectures to automate strain generation and displacement field analysis from cine MRI images. These tools enhance early detection of cardiotoxicity and improve diagnostic accuracy.

  • Image Processing and Simulation: She built deep learning-based deformable registration tools to reduce motion artifacts in angiography and improve vascular fidelity. Additionally, she contributed to differentiable projection modeling for fluoroscopic pose estimation.

  • Translational AI: Her work aims to bridge the gap between algorithm development and clinical implementation, with models designed for real-time, patient-specific analysis.

Her research is not only technical but also translational, addressing real-world challenges in healthcare delivery and diagnostics.

🏆 Accolades and Recognition

Dr. An has received numerous honors for her research excellence and academic contributions:

  • Poster Competition Winner at Marquette University and the Medical College of Wisconsin.

  • Scholarship and Travel Grants from prestigious societies such as the Global Cardio Oncology Summit, ISMRM, and Marquette University.

  • Kayoko Ishizuka Award and Graduate Student Association Awards at MCW.

  • Recognition for conference presentations at RSNA, ISMRM, SCMR, and ASNR.

Her work has been published in well-regarded journals including Radiology and Oncology, Journal of Imaging Informatics in Medicine, and Tomography, reflecting her influence across multiple disciplines.

🌍 Impact and Influence

Dr. An’s interdisciplinary expertise positions her as a valuable contributor to both the academic and clinical communities. Her collaborations with leading institutions such as Cleveland Clinic and Purdue University demonstrate the broader impact of her research. Whether improving stroke outcome prediction or refining cardiac diagnostics, her contributions are making real-world differences in how clinicians approach patient care. She is also actively involved in professional societies like RSNA, ISMRM, IEEE, and the American Statistical Association, fostering knowledge exchange and staying at the forefront of innovation.

🌱 Legacy and Future Contributions

Looking ahead, Dr. An aspires to expand her impact by continuing to develop explainable, reliable, and patient-specific AI tools for medical imaging. Her future work will likely delve deeper into probabilistic deep learning, longitudinal outcome modeling, and integrated diagnostics using multi-modal data sources such as imaging, genomics, and electronic health records. She is poised to be a leader in translational AI, driving innovations that not only push the boundaries of computational medicine but also enhance patient outcomes and healthcare efficiency.

🔗 Final Thoughts

Dr. Dana (Dayeong) An exemplifies a new generation of biomedical engineers—fluent in mathematics, passionate about clinical impact, and committed to advancing the future of precision medicine through data-driven innovation. Her legacy is being built at the nexus of technology, healthcare, and humanity.

📄 Publication Top Notes

Radiation-Induced Cardiotoxicity in Hypertensive Salt-Sensitive Rats: A Feasibility Study

Author: Dayeong An; Alison Kriegel; Suresh Kumar; Heather Himburg; Brian Fish; Slade Klawikowski; Daniel Rowe; Marek Lenarczyk; John Baker; El-Sayed Ibrahim

Journal: Life

Year: 2025

Elucidating Early Radiation-Induced Cardiotoxicity Markers in Preclinical Genetic Models Through Advanced Machine Learning and Cardiac MRI

Author: Dayeong An; El-Sayed Ibrahim

Journal: Journal of Imaging

Year: 2024

Jun Liu | Engineering | Best Researcher Award | 13444

Assoc. Prof. Dr. Jun Liu | Engineering | Best Researcher Award

Assoc. Prof. Dr. Jun Liu, North China University of Water Resources and Electric Power, China

Assoc. Prof. Dr. Jun Liu is an Assistant Professor and Master’s Supervisor in the Department of Thermal Engineering at North China University of Water Resources and Electric Power. He holds a Ph.D. in Engineering Thermophysics from Zhejiang University and specializes in CO₂ capture and utilization, solid waste treatment, multiphase flow and combustion simulation, and pollutant removal technologies. Dr. Liu has led multiple provincial-level research projects and published extensively in SCI and EI-indexed journals. His teaching focuses on boiler principles, operations, and clean combustion technologies.

Profile

Scopus

🎓 Early Academic Pursuits

Assoc. Prof. Dr. Jun Liu began his academic journey with a solid foundation in engineering and technology. In 2005, he enrolled at Shanxi University, where he pursued a Bachelor’s degree in Automation under the Department of Information Engineering. This initial exposure to systems control and engineering principles cultivated his interest in energy systems and laid the groundwork for his future endeavors in thermal engineering and environmental research. In 2009, he took a decisive step toward specializing in energy technologies by pursuing a Master’s degree in Fluid Machinery and Engineering at the School of Electric Power, North China University of Water Resources and Electric Power. Here, he honed his understanding of energy conversion systems, power plant operations, and machinery critical to thermal power generation. His passion for research and academic excellence led him to earn a Ph.D. in Engineering Thermophysics at the prestigious Zhejiang University from 2012 to 2016. This phase of his education sharpened his expertise in combustion processes, thermodynamic systems, and pollutant control, which later became key pillars of his professional and research identity.

💼 Professional Endeavors

Following the completion of his doctorate, Dr. Liu began his professional career at the Xi’an Thermal Power Research Institute Co., Ltd., Suzhou Branch in 2016. In this applied research environment, he gained hands-on experience in industrial-scale power systems and thermal processes, translating academic knowledge into practical solutions. In April 2019, Dr. Liu returned to academia, joining the College of Energy and Power Engineering at the North China University of Water Resources and Electric Power as an Assistant Professor and Master’s Supervisor. His return marked a blend of academic vigor and industrial insight, enriching the university’s teaching and research capabilities.

🔬 Contributions and Research Focus

Dr. Liu’s research spans several crucial areas within energy and environmental engineering:

  1. CO₂ Capture and Resource Utilization – He leads studies on innovative adsorbent materials and absorption technologies aimed at mitigating greenhouse gas emissions.

  2. Solid Waste Treatment – His work on incinerator systems and waste-to-energy solutions contributes to sustainable waste management practices.

  3. Multiphase Flow and Combustion Simulation – By modeling combustion processes, he aims to optimize energy efficiency and reduce emissions.

  4. Pollutant Removal – His research explores integrated technologies for removing NOx, SOx, and other harmful emissions from combustion systems.

He has presided over several key provincial research projects, including studies on CO₂ adsorption kinetics, microencapsulated absorbents, and waste heat boiler performance. His work reflects a deep commitment

🏅 Accolades and Recognition

to both scientific innovation and environmental sustainability.

Dr. Liu’s contributions have been recognized with several prestigious awards:

  • 🥇 First Prize, Boiler Science and Technology Award (2023), for his contributions to power generation technology for large mechanical grates.

  • 🥈 Second Prize, Henan Provincial Science and Technology Progress Award (2022), for his role in developing low-temperature waste heat recovery systems.

  • 🏆 First Prize, Excellent Scientific and Technological Paper Award by the Henan Province Office of Education (2021).

These accolades underscore his impactful research and its relevance to both academia and industry.

🌍 Impact and Influence

Dr. Liu has authored multiple peer-reviewed papers in SCI and EI indexed journals, reflecting the scientific merit and practical application of his research. His publication in Waste Management on flue gas recirculation and NOx emission control is especially noteworthy in the context of sustainable waste-to-energy practices. Moreover, his work influences not only fellow researchers but also policymakers and industry professionals seeking advanced environmental solutions. As a committed educator, he imparts knowledge through courses like Boiler Principle, Boiler Operation, and Clean Combustion and Pollutant Control. His teaching integrates the latest research findings, ensuring that students are prepared for real-world energy challenges.

🌱 Legacy and Future Contributions

Looking ahead, Dr. Liu is poised to continue making substantial contributions to the fields of clean energy and environmental protection. His interdisciplinary approach, combining engineering thermophysics, environmental science, and applied technology, equips him to tackle emerging challenges such as carbon neutrality, smart power systems, and circular economy strategies for waste management. He is also likely to mentor the next generation of researchers, fostering innovation through student supervision, collaborative projects, and academic outreach. As climate concerns and energy demands rise globally, Dr. Liu’s expertise will remain critical in shaping sustainable technological pathways for the future.

📄 Publication Top Notes

Research Progress on the Occurrence Characteristics of AAEM Elements in Zhundong Coal

Author: W., Wang, Wei, X., Guo, Xinwei, X., Wu, Xiaojiang, … C., Fan, Cunjiang, L., Zhuo, Lanting

Journal: Dongli Gongcheng Xuebao /Journal of Chinese Society of Power Engineering

Year: 2025

The effect of air distribution on the characteristics of waste combustion and NO generation in a grate incinerator

Author:  J., Liu, Jun, Z., Xie, Zheng, B., Guo, Bingyu, … L., Bai, Li, J., Long, Jisheng

Journal: Journal of the Energy Institute .,

Year: 2024