Qiufan Wang | Sustainable Materials | Best Researcher Award | 13542

Dr. Qiufan Wang | Sustainable Materials | Best Researcher Award

Dr. Qiufan Wang, South-central minzu university, China

Dr. Qiufan Wang has made pioneering contributions to the advancement of aqueous multivalent-ion energy storage systems, particularly in zinc- and ammonium-ion batteries. His research integrates heterojunction engineering, interfacial tuning, and in-situ diagnostics to improve energy density, stability, and scalability of hybrid supercapacitors. With over 40 high-impact publications and 4 patents, his innovations have significantly influenced next-generation battery design. Dr. Wang actively collaborates across disciplines to prototype aqueous him as a key contributor in the field of sustainable electrochemical energy storage.

Author Profile

Scopus

Early Academic Pursuits

Dr. Qiufan Wang’s academic journey began with a strong foundation in materials science and electrochemistry, culminating in a Ph.D. inMaterialsElectrochemistry from the prestigious Huazhong University of Science and Technology. During his doctoral studies, he delved deeply into energy storage mechanisms, particularly focusing on battery materials and charge-transfer interfaces. His early work reflected a strong curiosity about sustainable energy solutions and an aptitude for innovation. With a passion for science and a growing interest in multivalent-ion batteries, Dr. Wang’s academic training laid the groundwork for a career devoted to advancing electrochemical storage technologies.

Professional Endeavors

Currently serving as an Associate Professor at South-Central Minzu University, Dr. Wang has quickly risen to prominence in the field of aqueous energy storage systems. His professional career is marked by a blend of academic rigor and applied innovation. Dr. Wang has taken on numerous leadership roles in multi-institutional research collaborations, working alongside scientists and engineers to design, synthesize, and test new materials for  batteries and supercapacitors. His work has contributed significantly to national research initiatives and academic development at his institution, where he is known for mentoring young researchers and supervising graduate students.

His research group focuses on hybrid energy storage devices that combine the best features of batteries and capacitors, thereby enabling the development of fast-charging, long-cycle, and safe energy storage systems suitable for next-generation electronics and grid applications.

Contributions and Research Focus

Dr. Wang’s research sits at the intersection of materials electrochemistry, interfacial engineering, and energy storage systems. His major contributions include the development of heterojunction-based electrode materials, particularly WS₂-MoS₂ hybrids, which exhibit enhanced charge transport and storage capacity in aqueous zinc- and ammonium-ion batteries.

He is also known for advancing dual-ion battery systems and micro-supercapacitors, employing in-situ spectroscopy and Density Functional Theory (DFT) to understand and optimize material behavior at the molecular level. His work has directly influenced the performance metrics of battery prototypes and has paved the way for safer, more efficient energy storage alternatives to traditional lithium-ion technology.

With over 40 publications in top-tier journals such as Advanced Functional Materials, ACS Nano, and Nano Energy, as well as four patents granted or under review, Dr. Wang’s research is widely cited and respected across the global scientific community.

Accolades and Recognition

Dr. Wang has earned national and institutional recognition for his cutting-edge contributions to battery science. He has been the recipient of multiple research grants, awards for academic excellence, and best paper honors. Although specific award names are undisclosed in the public domain, his publication and patent record reflect a high-impact career.

His research outputs are consistently published in Nature-indexed journals, and his expertise has led to collaborations with internationally renowned teams in both academia and industry. His position on several editorial and review boards underlines his influence and respect in the field of electrochemical materials.

Publications 

📘Revealing the Role of Topotactic Anion Exchange in the Robust Zn Ion Storage of CuS1-xTex – ACS Sustainable (2025)
📘Enhancing aqueous zinc-ion battery performance through a dual-mechanism strategy – Chemical Communications (2025)
📘Electronic Regulation Engineering of (NH4)0.25WO3 Anode Enables Fast and Stable Rocking-Chair Zinc-Ion Batteries – Nano Letters (2025)

Yan Wang | Sustainable Materials | Best Researcher Award

Assoc Prof Dr. Yan Wang | Sustainable Materials | Best Researcher Award 

Assoc Prof Dr. Yan Wang, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China

Assoc. Prof. Dr. Yan Wang, a dedicated researcher at the Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, specializes in advanced oxidation processes for water treatment. With over a decade of expertise, she has led innovations in catalytic materials, environmental functional membranes, and contaminant removal technologies. She has authored over 40 SCI-indexed publications, holds 8 patents, and actively collaborates on national projects focused on wastewater reclamation. Dr. Wang’s impactful contributions have earned her prestigious honors, including the IWA China Star Program Member and multiple national science awards, reinforcing her role as a key figure in sustainable water treatment research.

Author Profile

Scopus

🎓 Early Academic Pursuits

Dr. Yan Wang embarked on her academic journey with a deep-rooted passion for environmental science and sustainability. She pursued her doctoral degree at Shandong University, where she laid the foundation for her future in eco-environmental research. Her early academic focus on chemistry and materials science seamlessly blended with environmental applications, particularly in the realm of water treatment. This strong academic preparation not only shaped her scientific perspective but also inspired her to delve into the complex challenges facing global water systems.

In 2015, following her Ph.D., she joined the Research Center for Eco-Environmental Sciences (RCEES), Chinese Academy of Sciences—one of China’s most prestigious environmental research institutions. This marked the beginning of a prolific research career dedicated to solving pressing water contamination issues through scientific innovation.

🧪 Professional Endeavors

Currently serving as an Associate Researcher and Master’s Supervisor at RCEES, Dr. Wang has cultivated an impressive research portfolio that includes:

  • 12 completed/ongoing projects

  • 40+ high-impact publications in SCI/Scopus-indexed journals

  • 8 patents (published/under process)

  • 1 authored book

  • 2 consultancy/industry collaborations

Her editorial contributions are notable as well, holding roles such as Guest Editor and Editorial Board Member for the journal Water Emerging Contaminants & Nanoplastics, showcasing her thought leadership in the field.

Dr. Wang is a key contributor to the National Natural Science Foundation of China-funded project: “Strengthening mechanism in wastewater reclamation by multiple micro-interface processes and water quality risk control,” where she designs novel materials for water remediation systems.

🧬 Contributions and Research Focus

Over the past decade, Dr. Wang has established herself as a prominent expert in advanced oxidation processes (AOPs), specializing in:

  • Development of environmental functional materials

  • Catalytic mechanisms for photo/electrochemical and Fenton-like systems

  • Removal of emerging contaminants and nanoplastics from water

A hallmark of her research is the development of self-supporting catalytic membranes via an in-situ synthesis approach—an innovation that enhances the stability and reusability of catalysts used in water treatment. Furthermore, she proposed a pioneering strategy to promote the regeneration of Fe(Ⅱ) from Fe(Ⅲ), addressing a long-standing limitation in Fenton catalytic cycles.

With an H-index of 27 (Web of Science), her research is both scientifically impactful and practically applicable, often bridging the gap between laboratory findings and real-world water purification systems.

🏆 Accolades and Recognition

Dr. Wang’s outstanding work has earned her national and international recognition, including:

  • IWA China Young Committee Member & Star Program Member

  • First Prize – Science and Technology Award, China Surface Engineering Association

  • Second Prize – Scientific and Technological Progress Award, Ministry of Environmental Protection

Her association with esteemed organizations like the International Water Association (IWA) and the Beijing Ecological Restoration Society further highlights her commitment to both the scientific community and sustainable development goals.

🌍 Impact and Influence

Dr. Wang’s influence extends beyond academia. Through collaborative partnerships with environmental companies, several of her technologies have been successfully commercialized and applied in water treatment plants across China. Her work not only contributes to improving water quality but also plays a critical role in shaping policy and best practices for water sustainability.

Her mentorship of graduate students fosters the next generation of eco-environmental scientists, and her editorial involvement ensures the advancement of scientific discourse on water contamination and remediation.

🔮 Legacy and Future Contributions

Looking ahead, Dr. Yan Wang aims to lead transformative projects that address climate-adaptive water purification, nanomaterials for pollutant capture, and low-energy AOP systems. Her future research will likely focus on risk assessment and quality control frameworks for wastewater reuse, crucial for achieving circular water economies.

With her proven track record and visionary outlook, Dr. Wang is well-positioned to become a global leader in eco-environmental innovation, with a legacy grounded in scientific excellence, environmental impact, and public health protection.

✍️Publication Top Notes


📘 Ozone Reactions with Olefins and Alkynes: Kinetics, Activation Energies, and Mechanisms

Author: Yan Wang, Eva M. Rodríguez, Daniel Rentsch, Zhimin Qiang, Urs von Gunten

Journal: Physico-Chemical Treatment and Resource Recovery

Year: 2025


📘Synergistic photogeneration of reactive oxygen species by Fe species self-deposited on resorcinol-formaldehyde towards the degradation of phenols under visible light

Author: Wenxiang Ji, Huiyu Dong, Yan Wang, Zhimin Qiang

Journal: Chemosphere

Year: 2024