Cai Xiaolong | Chemical Engineering | Research Excellence Award

Mr. Cai Xiaolong | Chemical Engineering | Research Excellence Award 

YuLin University | China

Mr. Cai Xiaolong (also cited as Cai Xiaolin) is an emerging researcher in materials science and photocatalysis, with a primary affiliation at the College of New Energy and the College of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, China. His work focuses on the design, synthesis, and optimization of advanced semiconductor photocatalysts for sustainable energy conversion and environmental applications — especially solar-driven CO₂ reduction and related redox reactions using visible light. A central theme in Mr. Cai’s research is the controllable synthesis and structural modulation of bismuth-based photocatalytic materials, with particular emphasis on bismuth oxybromide (Bi₄O₅Br₂) and other Bi-oxyhalide phases. These layered semiconductor compounds are of interest because their tunable band structures and internal electric fields can enhance the generation and separation of photogenerated charge carriers under visible light irradiation — properties that are key to efficient photocatalysis. MDPI In his recently published work, Mr. Cai led efforts to develop hydrothermal synthesis strategies that manipulate precursor chemistry — such as the Bi:Br molar ratio and solution pH — to achieve controlled formation of Bi₄O₅Br₂, BiOBr, and Bi₅O₇Br phases with varied morphologies and photocatalytic performance. This research demonstrates how careful tuning of synthesis parameters can yield materials with improved light absorption, tailored morphologies (e.g., microspheres, polyhedrons), and enhanced performance in the photocatalytic reduction of CO₂ to CO. Among the synthesized catalysts, certain Bi₄O₅Br₂ structures achieved record rates of CO production and competitive selectivity under visible-light conditions, illustrating the potential of phase-engineered bismuth oxybromides for solar fuel generation. MDPI Mr. Cai’s contributions extend to understanding how intrinsic material properties such as band gap, charge separation efficiency, and surface adsorption behavior impact photocatalytic pathways. His approach integrates materials chemistry, advanced structural characterization, and catalytic testing, aiming to bridge fundamental insights with application-oriented outcomes. As part of a wider research community exploring Bi-rich oxyhalides, related strategies include heterojunction construction, dopant engineering, and oxygen-vacancy modulation — all intended to further enhance visible-light activity and product specificity. RSC Publishing Overall, Mr. Cai Xiaolong’s work contributes to the development of next-generation photocatalytic materials that address global challenges in carbon utilization and renewable energy, positioning him as a notable scholar in photocatalytic CO₂ conversion and sustainable materials design.

Citation Metrics (Scopus)

  500
  400
  300
  200
  100
    50
    40
    30
    20
    10
      0

Citations
460

Documents
29

h-index
15

Citations

Documents

h-index


View Scopus Profile

Featured Publications

Wenxiu Cao | Chemical Engineering | Women Researcher Award

Assoc Prof Dr. Wenxiu Cao | Chemical Engineering | Women Researcher Award

Hunan City University | China

Assoc prof. Wenxiu Cao is an emerging researcher at the Key Laboratory of Low Carbon and Environmental Functional Materials of Hunan Province, working within the College of Materials and Chemical Engineering at Hunan City University, Yiyang, China. His work aligns with some of the most rapidly advancing fields in materials science, environmental chemistry, and sustainable technology innovation. As part of a leading research group focused on low-carbon and environmentally functional materials, Wenxiu Cao contributes to addressing global challenges related to energy efficiency, pollution control, and ecological sustainability through advanced material design and chemical engineering approaches. At Hunan City University, his research environment supports interdisciplinary collaboration, allowing him to investigate the development, characterization, and application of innovative materials with environmental benefits. His work often intersects with cutting-edge themes such as low-carbon technologies, photocatalytic and electrocatalytic systems, adsorption-based purification processes, nanostructured functional materials, and green chemical engineering. Through these areas, he contributes to solving real-world environmental issues connected to industrial emissions, renewable energy conversion, wastewater treatment, and sustainable manufacturing. His role at the Key Laboratory also involves contributing to scientific initiatives dedicated to reducing environmental footprints and developing functional materials capable of improving air and water quality. As an active researcher, Wenxiu Cao participates in experimental design, synthesis and fabrication of advanced materials, performance optimization, and analytical characterization using modern instrumental techniques. His work supports the creation of environmentally friendly material systems with high stability, efficiency, and applicability across industrial and environmental sectors. He also engages in scientific writing, data analysis, and academic collaboration, contributing to publications, laboratory innovation, and the knowledge exchange within his department and the broader scientific community. Being part of a provincial-level key laboratory places him at the center of technological advancement in Hunan Province, where research outcomes are expected to support China’s broader goals in carbon neutrality, sustainable development, and green transformation. His contributions help advance the mission of the College of Materials and Chemical Engineering by fostering high-impact research, contributing to student training, and strengthening the university’s academic profile. Through his ongoing work, Wenxiu Cao continues to build a promising research career focused on sustainable materials, environmental protection technologies, and innovations that support a cleaner, greener, and more resilient future. His dedication to advancing low-carbon material science highlights his commitment to both academic excellence and societal benefit.

Profile: Orcid

Featured Publications

Chen, J., Cao, W., Xu, S., Liu, L., Tang, H., Hu, N., & Zhang, W. (2025). Disaccharide/UiO-66(Zr) composites for selective dye adsorption: Synergistic mechanisms. Journal of Chromatography A, 2025(11), Article 466568.

Fu, S., Wang, F., Chen, X., Cao, W., Wang, L., & Tang, Y. (2025). Mechanism of synergistic Ce–Mn catalysis for one-step highly selective cyclohexane oxidation to KA-oil. Industrial & Engineering Chemistry Research, 2025(10-29).

Cao, W., Yuan, B., Zhuo, O., Li, Y., & Luo, W. (2022). Selective adsorption of CO₂/N₂ promoted by polar ligand functional groups of metal–organic frameworks. Journal of Porous Materials, 29(2), 1–12 (if page numbers unavailable, omit).

 

Qingguo Ma | Chemical Engineering | Excellence in Innovation Award

Dr. Qingguo Ma | Chemical Engineering | Excellence in Innovation Award

Taiyuan Institute of Technology | China

Dr. Qingguo Ma, an accomplished Associate Professor at the Taiyuan Institute of Technology, is a distinguished researcher specializing in advanced wastewater treatment, particularly in the catalytic degradation of formaldehyde. With a doctoral degree obtained from the School of Chemical Engineering and Technology at Nanjing University of Science and Technology, Dr. Ma has established a focused research trajectory in the development of innovative and efficient oxidation-based solutions for industrial pollutant removal. His work emphasizes the use of advanced oxidation processes employing oxidants such as hydrogen peroxide and monopersulfate in conjunction with highly efficient catalytic systems, including transition metal oxides and lanthanum-based composite metal oxide catalysts. Through this research, Dr. Ma has successfully achieved remarkable improvements in formaldehyde degradation efficiency, notably demonstrating degradation rates exceeding 90% under ambient conditions without the need for acidic, alkaline, photochemical, or electrocatalytic environments. This breakthrough shortens the oxidative degradation time by up to 12 times compared to conventional heterogeneous catalysts and provides a scalable pathway toward cost-effective and energy-efficient wastewater treatment technologies. Dr. Ma’s academic contributions are supported by a robust research profile, including five completed or ongoing research projects, eleven patents published or under application, and thirteen peer-reviewed publications indexed in SCI databases. His work has attracted growing scholarly attention, reflected in a developing citation index and engagement in two consultancy or industry-linked research initiatives. As a member of the Shanxi Provincial Society for Inspection and Testing, he actively contributes to the advancement of environmental monitoring and chemical engineering practices within the professional community. His research further explores the mechanistic pathways of formaldehyde oxidation, identifying both radical-driven and non-radical catalytic routes, which enhances scientific understanding and offers new design concepts for catalytic materials used in environmental remediation. Dr. Ma continues to expand collaborations and strengthen knowledge transfer through academic platforms, contributing meaningfully to scientific and societal progress in pollution control. With demonstrated excellence, innovation, and commitment to advancing sustainable wastewater treatment technologies, he exemplifies the qualities recognized by the Excellence in Innovation Award. Dr. Ma affirms the authenticity and accuracy of all information included in this application and acknowledges the guidelines and terms set forth for this nomination.

Profiles: Scopus | Orcid

Featured Publications

Ma, Q. (2024). Preparation of perovskite-type LaMnO₃ and its catalytic degradation of formaldehyde in wastewater. Molecules, 29(16). https://doi.org/10.3390/molecules29163822

Ma, Q. (2023). Removal of formaldehyde in water with low concentration of hydrogen peroxide catalyzed by lanthanum–silicon oxide composite. Desalination and Water Treatment, 29734. https://doi.org/10.5004/dwt.2023.29734

Ma, Q. (2023). The Baeyer–Villiger oxidation of cycloketones using hydrogen peroxide as an oxidant. Catalysts, 13(1). https://doi.org/10.3390/catal13010021

Ma, Q. (2022). Removal of formaldehyde from aqueous solution by hydrogen peroxide. Journal of Water Chemistry and Technology, 44(4). https://doi.org/10.3103/S1063455X22040099

Ma, Q. (2021). Enhancing propene selectivity in methanol and/or butene conversion by regulating channel systems over ZSM-5/ZSM-48 composite zeolites. Microporous and Mesoporous Materials, 310. https://doi.org/10.1016/j.micromeso.2020.110803

Ma, Q. (2015). Baeyer–Villiger oxidation of cyclic ketones with hydrogen peroxide catalyzed by silica–VTMO–OSO₃H. Journal of Porous Materials, 22(5). https://doi.org/10.1007/s10934-015-9918-8

Ma, Q. (2015). Silica/A153-SO₃H: An efficient catalyst for the Baeyer–Villiger oxidation of cyclic ketones with hydrogen peroxide. Comptes Rendus Chimie, 18(4). https://doi.org/10.1016/j.crci.2014.09.002

Ma, Q. (2015). Sn-bentonite-induced Baeyer–Villiger oxidation of 2-heptylcyclopentanone to δ-dodecalactone with aqueous hydrogen peroxide. Research on Chemical Intermediates, 41(5). https://doi.org/10.1007/s11164-013-1342-6