King-Ning TU | Morphology | Excellence in Research | 12641

Prof Dr King-Ning TU | Morphology | Excellence in Research

Prof Dr King-Ning TU, City University of Hong Kong, Hong Kong

rof. Dr. King-Ning Tu is a prominent academic and researcher affiliated with the City University of Hong Kong. His expertise lies in the field of materials science and engineering, with a particular focus on the physical properties of materials, material processing, and advanced materials for various applications.

Profile

Scopus

Education

  • Bachelor’s Degree: Prof. Tu earned his Bachelor of Science in Engineering from the National Taiwan University.
  • Master’s Degree: He completed his Master of Science in Materials Science and Engineering at the National Tsing Hua University in Taiwan.
  • Ph.D.: Prof. Tu received his Doctor of Philosophy (Ph.D.) degree in Materials Science and Engineering from the University of California, Berkeley.

Professional Experience

  • Current Position:
    • Professor at the Department of Materials Science and Engineering, City University of Hong Kong. He has been in this role for many years, leading research and teaching in the field.
  • Previous Roles:
    • Research Scientist: He has held positions in various research institutions where he worked on advanced materials and their applications.
    • Visiting Professor: Prof. Tu has been a visiting professor at several prestigious universities, contributing to collaborative research and academic programs.
  • Industry Experience:
    • He has worked with industrial partners and institutions, applying his expertise in materials science to real-world problems and innovations.
  • Editorial and Advisory Roles:
    • Prof. Tu has served on the editorial boards of leading scientific journals and has been involved in organizing and chairing international conferences in his field.

Research Contributions

  • Semiconductor Materials:
    • Microelectronics and Semiconductor Packaging: Prof. Tu has made substantial advancements in understanding the reliability and performance of semiconductor devices, focusing on materials and processes used in electronic packaging.
    • Thin-Film Materials: His research includes the development and characterization of thin-film materials for various electronic and optoelectronic applications.
  • Interconnects and Interfaces:
    • Solder Materials and Processes: He has investigated the properties and performance of solder materials used in electronic interconnects, contributing to improvements in device reliability and efficiency.
    • Metal-Dielectric Interfaces: Prof. Tu has studied the interactions at metal-dielectric interfaces, which are critical for the performance of electronic and optoelectronic devices.
  • Advanced Materials Processing:
    • Nanomaterials: His research encompasses the synthesis and application of nanomaterials, exploring their potential in enhancing the properties and functionalities of electronic devices.
    • Materials Characterization: Prof. Tu has developed and applied various techniques for the characterization of materials, contributing to a deeper understanding of their properties and behaviors.
  • Publications and Patents:
    • Prof. Tu has authored and co-authored numerous papers in high-impact journals and has been involved in patenting innovative materials and processes. His work has significantly influenced the field of materials science and engineering.
  • Collaborations and Impact:
    • He has collaborated with leading researchers and institutions worldwide, contributing to significant advancements in materials science. His research has had a lasting impact on both academic research and industrial practices in the field.

Publication Top Notes: Morphology 

  • Semiconductor Reliability and Interconnects:
    • “Intermetallic Compound Formation and Solder Joint Reliability”: This work explores the formation of intermetallic compounds in solder joints and their impact on the reliability of electronic interconnects.
    • “Advanced Materials for Electronic Interconnects: Mechanisms and Performance”: Prof. Tu investigates advanced materials used in electronic interconnects, focusing on mechanisms affecting performance and reliability.
  • Thin-Film Materials:
    • “Thin-Film Materials for Advanced Semiconductor Devices: Processing and Characterization”: This publication covers the processing techniques and characterization methods for thin-film materials used in semiconductor devices.
    • “Innovations in Thin-Film Technology for Optoelectronic Applications”: Prof. Tu addresses innovations in thin-film technology with applications in optoelectronics, highlighting advances in materials and processing.
  • Nanomaterials:
    • “Nanomaterials in Electronics: Synthesis, Properties, and Applications”: This work delves into the synthesis, properties, and applications of nanomaterials in the electronics industry.
    • “Nanostructured Materials for Enhanced Electronic and Optical Properties”: Prof. Tu explores the use of nanostructured materials to enhance electronic and optical properties in various applications.
  • Materials Characterization:
    • “Techniques for Characterizing Semiconductor Materials: A Comprehensive Review”: This publication provides a review of various techniques used to characterize semiconductor materials, contributing to the understanding of their properties.
    • “Advanced Methods for Materials Analysis: From Microscopy to Spectroscopy”: Prof. Tu discusses advanced methods for materials analysis, including microscopy and spectroscopy techniques.
  • Books and Monographs:
    • Prof. Tu has authored and contributed to several books and monographs on materials science and semiconductor technology, providing in-depth coverage of various topics in the field.

 

Takeshi Chiba | Life Sciences | Best Researcher Award

Dr. Takeshi Chiba | Life Sciences | Best Researcher Award

Associate Professor at Juntendo University, Japan

Dr. Takeshi Chiba is an Associate Professor and Assistant Director at Juntendo University’s Laboratory of Clinical Pharmacology and Department of Pharmacy. He earned his pharmacist’s license in 1999 and a Ph.D. in Pharmaceutical Sciences in 2002 from Josai University. His professional journey includes roles at Iwate Medical University Hospital, Iwate Medical University, Hokkaido University of Science, and Juntendo University. Dr. Chiba’s research focuses on the physiological functions of mammary epithelial cells during lactation, including the synthesis of norepinephrine and the effects of psychological stress and smoking on milk composition. His contributions have led to significant findings in cell biology and pharmacology, reflected in 42 published journal articles and numerous awards. He is a member of several professional societies and has been recognized for his work with academic awards and publications.

Professional Profiles:

🎓 Education

Dr. Takeshi Chiba earned his Pharmacist’s license from Josai University in Saitama, Japan, in March 1999. He then pursued advanced studies at the same institution, culminating in a Ph.D. in Pharmaceutical Sciences, which he completed in March 2002.

Professional Experience

Dr. Takeshi Chiba began his career as a pharmacist at Iwate Medical University Hospital in Japan, serving from April 2002 to March 2009. He transitioned to an academic role as an Assistant Professor in the Department of Clinical Pharmaceutics at Iwate Medical University from April 2009 to March 2019. He then moved to Hokkaido University of Science, where he was a Lecturer in the Department of Clinical Pharmaceutics from April 2019 to March 2023. Since April 2023, Dr. Chiba has been serving as an Associate Professor in the Laboratory of Clinical Pharmacology at the Faculty of Pharmacy, Juntendo University, while also holding the position of Assistant Director at the Department of Pharmacy, Juntendo University Hospital.

Research Interest

Dr. Takeshi Chiba’s research interests focus on clinical pharmacology, particularly the physiological and biochemical aspects of lactation and its impact on infant health. His notable research includes the discovery that mammary epithelial cells synthesize and secrete norepinephrine into milk during lactation, a previously unknown function. He also investigates the effects of psychological stress on microRNA expression in milk, specifically how decreased miR-148a levels influence intestinal tight junction protein regulation in infants. Additionally, his research addresses how smoking affects milk composition by increasing miR-210 expression in mammary epithelium and its implications for infant nutrition and health.

Award and Honors

Dr. Takeshi Chiba has received notable recognition for his contributions to the field of clinical pharmacology. In June 2019, he was honored with an academic award from the Iwate Society of Hospital Pharmacists, reflecting his significant achievements and impact in his area of expertise.

Research Skills

Dr. Takeshi Chiba’s research skills encompass a diverse range of expertise in clinical pharmacology, nutrition, and cell biology. He is proficient in the analysis of physiological functions, including the synthesis and secretion of norepinephrine in mammary epithelial cells and the impact of psychological stress and smoking on milk composition. Dr. Chiba is adept at investigating the regulatory effects of microRNAs on tight junction proteins in infants’ intestines. His research methods involve a combination of experimental and analytical techniques to understand and innovate in the fields of pharmacology and health science.

Publications

  1. “Smoking-induced suppression of β-casein in milk is associated with an increase in miR-210-5p expression in mammary epithelia”
    • Authors: Chiba, T., Takaguri, A., Mikuma, T., Kimura, T., Maeda, T.
    • Year: 2024
  2. “Human Milk Exosomes Induce ZO-1 Expression via Inhibition of REDD1 Expression in Human Intestinal Epithelial Cells”
    • Authors: Chiba, T., Maeda, T.
    • Year: 2023
  3. “Suppression of milk-derived miR-148a caused by stress plays a role in the decrease in intestinal ZO-1 expression in infants”
    • Authors: Chiba , T. , Takaguri , A. , Kooka , A. , Wada
    • Year: 2022
  4. “Expression profiles of hsa-miR-148a-3p and hsa-miR-125b-5p in human breast milk and infant formulae”
    • Authors: Chiba, T., Kooka, A., Kowatari, K., Sato, H., Wada, S.
    • Year: 2022
  5. “Renin-angiotensin system inhibitors may have an advantage over calcium channel blockers in reducing proteinuria in gastric cancer patients receiving ramucirumab”
    • Authors: Chiba, T., Ujiie, H., Yaegashi, Y., Tasaki, Y., Sato, H.
    • Year: 2022
  6. “Analysis of risk factors for skin disorders caused by anti-epidermal growth factor receptor antibody drugs and examination of methods for their avoidance”
    • Or
    • Year: 2021
  7. “Switching from Intravenous to Oral Tacrolimus Reduces its Blood Concentration in Paediatric Cancer Patients”
    • Authors: Ujiie, H., Nihei, S., Nishiya, N., Chiba, T., Kudo, K.
    • Year: 2021
  8. “Norepinephrine transporter expressed on mammary epithelial cells incorporates norepinephrine in milk into the cells”
    • Authors: Chiba, T., Takaguri, A., Maeda, T.
    • Year: 2021
  9. “Physiologic changes in serotonin concentrations in breast milk during lactation”
    • Authors: Maeda, T., Shioyama, A., Tairabune, T., Kudo, K., Chiba, T.
    • Year: 2020
  10. “Cancer cachexia may hinder pain control when using fentanyl patch”
    • Authors: Chiba, T., Takahashi, H., Tairabune, T., Ueda, H., Kudo, K.
    • Year: 2020

 

 

Sanjay Basumatary | Chemistry and Materials Science | Best Researcher Award

Prof. Sanjay Basumatary | Chemistry and Materials Science | Best Researcher Award

Professor at Bodoland University, India.

Dr. Sanjay Basumatary is a distinguished academician and researcher in Chemistry, currently serving as Professor and Head of the Department of Chemistry at Bodoland University, India. He holds a Ph.D. in Chemistry from Gauhati University, with expertise in renewable energy, biodiesel production, catalysis, phytochemistry, and adsorption studies. Throughout his career, Dr. Basumatary has demonstrated strong research acumen, proficient in experimental design, analytical techniques, data analysis, and literature synthesis. He has received prestigious awards including the CSIR-UGC NET and UGC Rajiv Gandhi National JRF, recognizing his contributions to the field. Dr. Basumatary is committed to advancing sustainable practices and has a robust publication record, presenting his research globally to foster collaborations and innovation in Chemistry.

Professional Profiles:

Education 🎓

Dr. Sanjay Basumatary pursued his academic journey in Chemistry with a Ph.D. from Gauhati University, Guwahati, completing his thesis on “Transesterification of Non-edible Vegetable Oils Using a Novel Catalyst Derived from Banana Plant and Technical Assessment of the Products as Biodiesel” in 2012. Prior to his doctoral studies, he earned his M.Sc. in Organic Chemistry from the same institution in 2007. His undergraduate education began at Kokrajhar Govt. College, where he obtained a B.Sc. in Chemistry in 2005. These educational achievements have equipped Dr. Basumatary with a strong foundation in Chemistry, facilitating his subsequent career in academia and research at Bodoland University, where he currently serves as Professor and Head of the Department of Chemistry.

Professional Experience

Dr. Sanjay Basumatary has built a distinguished career in academia, specializing in Chemistry. Currently serving as Professor and Head of the Department of Chemistry at Bodoland University, Kokrajhar, he has been instrumental in shaping the academic landscape. His journey began as an Assistant Professor at Bineswar Brahma Engineering College, Kokrajhar, where he taught from August 2010 to August 2014. Subsequently, he joined Bodoland University as an Assistant Professor in August 2014 and steadily progressed to the position of Assistant Professor (Senior Scale) before assuming the role of Professor in November 2021. Throughout his career, Dr. Basumatary has also held various administrative roles within the Department of Chemistry, including several stints as Acting Head and currently as Head since December 2021. His tenure has been marked by significant contributions to teaching, research guidance, and administrative leadership, consolidating his reputation as a respected figure in the field of Chemistry education and research.

Research Interest

Dr. Sanjay Basumatary’s research interests encompass a broad spectrum within Chemistry, focusing particularly on areas crucial to sustainable development and innovation. His primary research interests include Renewable Energy, with a specific emphasis on Biodiesel production and catalysis. Additionally, he delves into Phytochemistry, exploring the chemical composition and properties of natural products derived from plants. His research also extends to Adsorption studies, investigating the application of adsorbents in environmental and industrial contexts. Through his multifaceted research endeavors, Dr. Basumatary contributes significantly to advancing knowledge and solutions in these critical areas of Chemistry.

Award and Honors

Dr. Sanjay Basumatary has received notable awards and honors in recognition of his academic and research contributions. He was awarded the CSIR-UGC NET in 2009, highlighting his expertise in Chemistry and qualifying him for national-level research fellowships. Additionally, he earned the prestigious UGC Rajiv Gandhi National Junior Research Fellowship (JRF) from 2008 to 2010, further underscoring his dedication to advancing research in his field. These accolades reflect Dr. Basumatary’s commitment to excellence in academia and his significant contributions to the field of Chemistry, particularly in sustainable energy and natural product chemistry.

Research Skills

Dr. Sanjay Basumatary possesses a diverse range of research skills crucial to his contributions in Chemistry. His expertise encompasses proficient experimental design and execution, particularly in areas such as renewable energy, biodiesel production, catalysis, phytochemistry, and adsorption studies. He is adept at employing various analytical techniques, including spectroscopy (UV-Vis, IR), chromatography (GC-MS, HPLC), and microscopy (SEM, TEM) for detailed chemical analysis and characterization. Dr. Basumatary excels in data analysis, employing statistical methods to interpret experimental results effectively and derive meaningful conclusions. Furthermore, he demonstrates strong capabilities in conducting thorough literature reviews to establish the theoretical foundations of his research. He has a proven track record in publishing research findings in esteemed journals and presenting his work at national and international conferences. Additionally, his skills extend to grant writing, project management, and fostering collaborative research efforts, underscoring his commitment to advancing knowledge and innovation in Chemistry.

Publications

  1. High quality biodiesel from yellow oleander (Thevetia peruviana) seed oil
    • Authors: DC Deka, S Basumatary
    • Year: 2011
    • Citations: 226
  2. Biodiesel production from mixed oils: A sustainable approach towards industrial biofuel production
    • Authors: S Brahma, B Nath, B Basumatary, B Das, P Saikia, K Patir, S Basumatary
    • Year: 2022
    • Citations: 190
  3. Waste to value addition: Utilization of waste Brassica nigra plant derived novel green heterogeneous base catalyst for effective synthesis of biodiesel
    • Authors: B Nath, B Das, P Kalita, S Basumatary
    • Year: 2019
    • Citations: 168
  4. Highly efficient renewable heterogeneous base catalyst derived from waste Sesamum indicum plant for synthesis of biodiesel
    • Authors: B Nath, P Kalita, B Das, S Basumatary
    • Year: 2020
    • Citations: 109
  5. Utilization of renewable and sustainable basic heterogeneous catalyst from Heteropanax fragrans (Kesseru) for effective synthesis of biodiesel from Jatropha curcas oil
    • Authors: S Basumatary, B Nath, B Das, P Kalita, B Basumatary
    • Year: 2021
    • Citations: 101
  6. Application of agro-waste derived materials as heterogeneous base catalysts for biodiesel synthesis
    • Authors: S Basumatary, B Nath, P Kalita
    • Year: 2018
    • Citations: 81
  7. Waste Musa paradisiaca plant: an efficient heterogeneous base catalyst for fast production of biodiesel
    • Authors: B Basumatary, S Basumatary, B Das, B Nath, P Kalita
    • Year: 2021
    • Citations: 74
  8. Transesterification with heterogeneous catalyst in production of biodiesel: A Review
    • Authors: S Basumatary
    • Year: 2013
    • Citations: 69
  9. Production of renewable biodiesel using metal organic frameworks based materials as efficient heterogeneous catalysts
    • Authors: SF Basumatary, K Patir, B Das, P Saikia, S Brahma, B Basumatary, B Nath
    • Year: 2022
    • Citations: 63
  10. Biodiesel as renewable biofuel produced via enzyme-based catalyzed transesterification
    • Authors: P Kalita, B Basumatary, P Saikia, B Das, S Basumatary
    • Year: 2022
    • Citations: 61
  11. Non-conventional seed oils as potential feedstocks for future biodiesel industries: a brief review
    • Authors: S Basumatary
    • Year: 2013
    • Citations: 60

 

 

 

Beda Innocent ADJI | Biological Sciences | Scientific Excellence Achievement Award

Dr. Beda Innocent ADJI | Biological Sciences | Scientific Excellence Achievement Award

Ph. d student at University of Iceland, Iceland.

Beda Innocent Adji is a dedicated researcher in the field of agricultural and forestry sciences, driven by a passion for advancing our understanding of plant biodiversity, adaptation, and resilience in tropical ecosystems. His academic journey is marked by a series of notable achievements, including post-doctoral studies in Biotechnology and Molecular Biology at the Institut de Recherche pour le Développement (IRD, France), where he focused on the RNA-RainForStory project in the Congo Basin. Prior to this, he pursued post-doctoral research in Digital and Computational Plant Sciences, collaborating between institutions in France and China. Beda’s doctoral studies, specializing in Genetics and Plant Improvement, earned him the prestigious mention of “Très honorable,” reflecting the excellence of his research contributions. His expertise spans experimental design, data analysis, genetic and molecular techniques, computational modeling, and interdisciplinary collaboration. Through his work, Beda aims to develop innovative strategies for enhancing the productivity and sustainability of agroforestry systems, contributing to global efforts in biodiversity conservation and climate resilience.

Professional Profiles:

Education:

Beda Innocent Adji’s educational journey is characterized by a rich tapestry of academic accomplishments across various domains of agricultural and forestry sciences. His pursuit of knowledge culminated in several notable degrees and achievements. Notably, he completed post-doctoral studies in Biotechnology and Molecular Biology at the Institut de Recherche pour le Développement (IRD, France) in 2024, focusing on the RNA-RainForStory project in the Congo Basin. Prior to this, in 2023, he undertook post-doctoral research in Digital and Computational Plant Sciences, a collaborative program between the Académie des Sciences et Lettres de l’Université de Montpellier (France) and the Institut d’Automatisation et des Systèmes Complexes d’Intelligence Artificielle Multimodaux de l’Académie Chinoise des Sciences (CASIA, China). Earlier, he earned his Doctorate in Tropical Agriculture and Forestry, specializing in Genetics and Plant Improvement, from Université Jean Lorougnon Guédé (UJLoG, Côte d’Ivoire) in conjunction with CIRAD and IRD, France, where he received the prestigious mention of “Très honorable.” These accomplishments underscore Beda’s dedication to academic excellence and his significant contributions to the field of agricultural and forestry sciences.

Professional Experience

Beda Innocent Adji’s professional journey is characterized by his substantial contributions and expertise in the field of agricultural and forestry sciences. As a permanent researcher at the Université Jean Lorougnon Guédé and an associate researcher at both IRD and CIRAD, Beda seamlessly blends academic rigor with practical application. His role involves spearheading various research projects focusing on forest genomics, plant improvement, botanical studies, and plant modeling. Beda’s extensive professional experience spans across international collaborations, where he actively engages in interdisciplinary research endeavors. Through his work, Beda has established himself as a prominent figure in the scientific community, continuously striving to advance knowledge and address critical issues in tropical agriculture and forestry. His dedication to research excellence and commitment to fostering sustainable practices underscore his significant impact in the field.

Research Interest

Beda Innocent Adji’s research interests revolve around advancing our understanding of plant biodiversity, adaptation, and resilience in tropical ecosystems. He is particularly interested in forest genomics, plant improvement, botanical studies, and plant modeling. Beda’s work aims to unravel the genetic mechanisms underlying plant traits and their response to environmental stressors. Through interdisciplinary approaches, including genetic and molecular techniques, computational modeling, and image analysis, he seeks to develop innovative strategies for enhancing the productivity and sustainability of agroforestry systems. Additionally, Beda is passionate about exploring the potential of emerging technologies, such as digital and computational plant sciences, to revolutionize agricultural practices and mitigate the impacts of climate change on plant communities. His research endeavors are driven by a commitment to safeguarding biodiversity and promoting the resilience of tropical plants in the face of evolving environmental challenges.

Award and Honors

Beda Innocent Adji has received recognition for his outstanding academic achievements and contributions to the field of agricultural and forestry sciences. Notably, he was awarded the prestigious mention of “Très honorable” for his doctoral thesis in Tropical Agriculture and Forestry, highlighting the excellence of his research work and its significance in advancing knowledge in the field. This honor underscores Beda’s dedication to academic excellence and his significant contributions to the scientific community. Additionally, his contributions to international research collaborations and interdisciplinary studies further solidify his reputation as a respected figure in the field. Through his exceptional research endeavors, Beda continues to make valuable contributions to the advancement of agricultural and forestry sciences, earning him accolades and recognition from peers and institutions alike.

Research Skills

Beda Innocent Adji possesses a diverse and comprehensive set of research skills essential for conducting rigorous and impactful research in agricultural and forestry sciences. He excels in designing robust experimental protocols, ensuring the reliability and validity of research outcomes. Proficient in collecting and analyzing data using various methods, including field observations and statistical analyses, Beda employs both quantitative and qualitative approaches to extract meaningful insights. His expertise in genetic and molecular techniques enables him to investigate plant genetics and molecular pathways effectively. Additionally, Beda demonstrates proficiency in computational modeling and image analysis, allowing him to simulate biological processes and analyze plant specimens with precision. He collaborates seamlessly with researchers from diverse disciplines, leveraging their expertise to address complex research questions. Furthermore, Beda’s effective communication skills ensure the dissemination of his research findings through oral presentations, written reports, and peer-reviewed publications. With a passion for advancing agricultural and forestry sciences, Beda is well-equipped to make significant contributions to the field and tackle pressing challenges in plant biodiversity, adaptation, and sustainability.

Publications

  1. Stochastic modelling of development and biomass allocation: Computation applied to architecture of young mahogany trees (Khaya senegalensis Desr. A. Juss), a native African savannah emblematic agroforestry species
    • Authors: B.I. Adji, X. Wang, V. Letort, M. Jaeger, P. De Reffye
    • Journal: Computers and Electronics in Agriculture, 2024, 220, 108864
  2. Rethinking Iconic Species Reforestation in West Africa: Seed Shape Harnessing Is Strategic for Enhanced Germination and Vigorous Growth in Khaya senegalensis and Parkia biglobosa
    • Authors: B.I. Adji, V. Letort, X. Wang, S. Sabatier, D.S. Akaffou
    • Journal: Forests, 2023, 14(7), 1311
    • Citations: 1
  3. Variation in growth unit morphology in Khaya senegalensis (Desr.) A. Juss. (Meliaceae) and Pterocarpus erinaceus Poir. (Fabaceae) according to habitat and climate | Variation de la morphologie des unités de croissance des essences Khaya senegalensis (Desr.) A. Juss. (Meliaceae) et Pterocarpus erinaceus Poir. (Fabaceae) selon l’habitat et le climat
    • Authors: B.I. Adji, D.S. Akaffou, S. Sabatier
    • Journal: Bois et Forets des Tropiques, 2022, 354(4), pp. 41–54
    • Citations: 1
  4. Correction to: Maternal environment and seed size are important for successful germination and seedling establishment of Pterocarpus erinaceus (Fabaceae)
    • Authors: B.I. Adji, D.S. Akaffou, P. De Reffye, S. Sabatier
    • Journal: Journal of Forestry Research, 2022, 33(6), pp. 1957
  5. Maternal environment and seed size are important for successful germination and seedling establishment of Pterocarpus erinaceus (Fabaceae)
    • Authors: B.I. Adji, D.S. Akaffou, P. De Reffye, S. Sabatier
    • Journal: Journal of Forestry Research, 2022, 33(3), pp. 977–990
    • Citations: 3
  6. Allometric models for non-destructive estimation of dry biomass and leaf area in Khaya senegalensis (Desr.) A. Juss., 1830 (Meliaceae), Pterocarpus erinaceus Poir., 1804 (Fabaceae) and Parkia biglobosa, Jack, R. Br., 1830 (Fabaceae)
    • Authors: B.I. Adji, D.S. Akaffou, K.H. Kouassi, M. Jaeger, S. Sabatier
    • Journal: Trees – Structure and Function, 2021, 35(6), pp. 1905–1920
    • Citations: 5
  7. Correction to: Allometric models for non-destructive estimation of dry biomass and leaf area in Khaya senegalensis (Desr.) A. Juss (Meliaceae), Pterocarpus erinaceus Pear. (Fabaceae) and Parkia biglobosa, Jack, R. Br. (Fabaceae)
    • Authors: B.I. Adji, D.S. Akaffou, K.H. Kouassi, M. Jaeger, S. Sabatier
    • Journal: Trees – Structure and Function, 2021, 35(5), pp. 1747