Robert Hahn | Renewable Energy Technologies | Outstanding Scientist Award

Robert Hahn | Renewable Energy Technologies | Outstanding Scientist Award

Dr Robert Hahn, Fraunhofer IZM, Germany

Dr. Robert Hahn leads the Micro Energy Group at Fraunhofer IZM in Berlin. 🎓 He earned his M.Sc. and Ph.D. in Electrical Engineering from the Technical University of Dresden in 1986 and 1990. Joining Fraunhofer IZM in 1994, he has driven numerous national and European projects on batteries, micro fuel cells, and hydrogen generators. 🔋 With 30 patents and over 100 publications, his research covers lithium-ion, aluminum-ion, and nickel-zinc batteries, plus hydrogen storage. 🚀 He coordinated the FP7 MATFLEXEND project and now leads the BMBF Zn-H2 project, focusing on micro-batteries and hydrogen storage systems. 🌟

Publication profile

Google scholar

Education

Dr. Robert Hahn is the head of the Micro Energy Group at Fraunhofer IZM in Berlin. He earned his M.Sc. (1986) and Ph.D. (1990) in Electrical Engineering from the Technical University of Dresden. He joined Fraunhofer IZM in 1994.

Teaching & Projects

He lectures on micro energy storage at the Technical University of Berlin. His team is prototyping micro-batteries and demonstrating hydrogen storage systems for industrial applications.

Research focus

Based on the provided publications, this researcher’s focus is on advancing battery technologies and energy systems. Their work spans various types of batteries, including aluminum-graphite and microbatteries, and involves enhancing performance and stability through novel materials and design approaches. Key contributions include developing high-performance aluminum batteries, planar micro fuel cells, and exploring recycling processes for lithium-ion batteries. Their research also addresses energy autonomy in sensor systems and innovations in power supplies. The integration of advanced materials and cutting-edge technologies is central to their work, aiming to improve energy storage and efficiency. 🔋🔬🔧

Publication top notes

An overview and future perspectives of aluminum batteries

Development of a planar micro fuel cell with thin film and micro patterning technologies

Planar self-breathing fuel cells

\Insights into the reversibility of aluminum graphite batteries

Closed-loop hydrometallurgical treatment of end-of-life lithium ion batteries: Towards zero-waste process and metal recycling in advanced batteries

Stability of planar PEMFC in printed circuit board technology

Physics with colder molecular ions: the Heidelberg Cryogenic storage ring CSR

Batteries and power supplies for wearable and ubiquitous computing

Polyacrylonitrile separator for high-performance aluminum batteries with improved interface stability

Energy autonomous sensor systems: Towards a ubiquitous sensor technology

 

Wei Lu | Renewable Energy Technologies | Best Researcher Award

Prof Dr. Wei Lu | Renewable Energy Technologies | Best Researcher Award

Professor at Guangxi University, China.

Wei Lu is a distinguished Full Professor of energy and power engineering at Guangxi University, recognized for his expertise in renewable energy, energy system analysis, and optimization. He holds a B.S. in heat engineering, an M.S. in engineering thermophysics from South China University of Technology, and a Ph.D. in engineering thermophysics from Tianjin University. Wei Lu’s career includes a postdoctoral fellowship at Tsinghua University and accreditation as a Registered Utility Engineer by Chinese government departments. His research focuses on carbon dioxide capture, utilization, and storage, alongside innovations in thermodynamics and fluid mechanics. With over 131 publications, 24 patents, and leadership in numerous research projects, he remains dedicated to advancing engineering solutions and education.

Professional Profiles:

Education 🎓

Wei Lu is a Full Professor of energy and power engineering at Guangxi University. He earned his B.S. in heat engineering and M.S. in engineering thermophysics from South China University of Technology, followed by a Ph.D. in engineering thermophysics from Tianjin University. With a background as a postdoctoral fellow at Tsinghua University, he holds credentials as a Registered Utility Engineer accredited by Chinese government departments. His research focuses on renewable energy, energy system analysis and optimization, carbon dioxide capture, utilization and storage, and advancements in engineering education.

Professional Experience

Wei Lu has a distinguished professional trajectory marked by significant contributions in academia and research. Currently serving as a Full Professor of energy and power engineering at Guangxi University, he brings extensive expertise to his role. Wei Lu’s career began with a postdoctoral fellowship at Tsinghua University, where he further honed his skills in energy systems and engineering. He has actively engaged in consultancy and industry-sponsored projects, totaling 36 collaborations, showcasing his practical insights and application of theoretical knowledge. His professional journey underscores his commitment to advancing renewable energy technologies, optimizing energy systems, and pioneering solutions in carbon dioxide capture and storage.

Research Interest

Wei Lu’s research interests span across several critical areas in energy and engineering. He is particularly focused on renewable energy, aiming to enhance efficiency and sustainability in power generation. His expertise extends to energy system analysis and optimization, where he explores methods to improve the performance and reliability of energy systems. Additionally, Wei Lu is actively involved in research related to carbon dioxide capture, utilization, and storage (CCUS), addressing crucial environmental challenges through innovative engineering solutions. His research also encompasses engineering education, aiming to cultivate future generations of engineers equipped with the knowledge and skills necessary to tackle global energy issues effectively.

Award and Honors

Wei Lu has accumulated numerous awards and honors throughout his illustrious career. He was granted honorary admission to the PhD program for his outstanding academic achievements and has consistently ranked at the top in both Master’s and Bachelor’s programs for his exceptional academic performance. His participation and high placement in collegiate scientific olympiads have further underscored his proficiency in computer engineering. Wei Lu’s recognition as a Registered Utility Engineer by Chinese government departments highlights his expertise in energy engineering. His contributions to renewable energy, energy system analysis, and carbon dioxide capture have been widely acknowledged, solidifying his reputation as a leader in these critical research areas.

Research Skills

Wei Lu possesses a robust set of research skills honed through his extensive academic and professional journey. His expertise spans across thermodynamics, fluid mechanics and machinery, gas separation, renewable energy, and carbon dioxide capture, utilization, and storage. He has developed innovative approaches in optimal design theory for ejectors and novel methods utilizing thermal transpiration effect for applications in hydrogen storage and transportation. Wei Lu’s proficiency extends to conducting comprehensive energy system analysis and optimization, contributing significantly to advancements in engineering education. His research skills are underscored by his prolific publication record, extensive project involvement, and leadership in collaborative research initiatives with international engineers.

Publications

  1. Engineering a photothermal responsive cellulose carbon capture material for solar-driven CO2 desorption
    • Authors: Luo, W., Lu, W., Xiang, Q., Xu, C., He, H.
    • Year: 2024
  2. The Comprehensive Influence of the Nozzle Distance and Throat Length of Mixing Chamber on the Performance of Ejector
    • Authors: Tan, L., Chen, H., Ge, J., Lu, W.
    • Year: 2024
  3. Energy Efficiency Analysis of Multistage Knudsen Vacuum Pump
    • Authors: Ke, J., Meng, S., Su, X., Lu, W.
    • Year: 2024
  4. Effect of membrane thermal conductivity on ion current rectification in conical nanochannels under asymmetric temperature
    • Authors: Qiao, N., Li, Z., Zhang, Z., Lu, W., Li, C.
    • Year: 2023
    • Citations: 2
  5. Ion current rectification in asymmetric nanochannels: effects of nanochannel shape and surface charge
    • Authors: Qiao, N., Zhang, Z., Liu, Z., Lu, W., Li, C.
    • Year: 2023
    • Citations: 6
  6. Analysis on influencing factors and improvement of thermal efficiency of bagasse boilers based on performance test data
    • Authors: Mo, Q., Zhu, X., Deng, C., Chen, X., Lin, X.
    • Year: 2023
    • Citations: 6
  7. Influence of graphite/alumina on co-pyrolysis of Chlorella vulgaris and polypropylene for producing bio-oil
    • Authors: Chen, C., Zhao, J., Wei, Y., Bi, Y., Qiu, H.
    • Year: 2023
    • Citations: 3
  8. Tailoring and properties of a novel solar energy-triggered regenerative bionic fiber adsorbent for CO2 capture
    • Authors: Lu, W., Shi, X., Zhou, H., Wang, L., He, H.
    • Year: 2022
    • Citations: 13
  9. Analysis of Flow Rate and Pressure Characteristics for Multistage Thermal Transpiration Based Vacuum Pump
    • Authors: Qin, R., Meng, S., Wang, B., Lu, W.
    • Year: 2022
    • Citations: 1
  10. Modelling, Optimization, and Experimental Studies of Refrigeration CO2 Ejectors: A Review
    • Authors: Zheng, L., Zhang, Y., Hao, L., Deng, J., Lu, W.
    • Year: 2022
    • Citations: 2