Doudou Zhang | Materials Science | Best Researcher Award

Dr. Doudou Zhang | Materials Science | Best Researcher Award 

Macquarie University | Australia

Dr. Doudou Zhang is a distinguished Macquarie University Research Fellow (Vice-Chancellor Fellow) and lecturer in the School of Engineering, renowned for her pioneering contributions to functional materials and photoelectrochemical (PEC) energy systems. Her research focuses on the development of advanced materials and device architectures for solar-to-hydrogen conversion, CO₂ reduction, and sustainable ammonia synthesis, integrating materials design, device engineering, and artificial intelligence (AI)-driven approaches to accelerate innovation in renewable energy technologies. Dr. Zhang received her Ph.D. in Chemistry from Shaanxi Normal University, followed by a prestigious postdoctoral research fellowship at the Australian National University (ANU) from 2019 to 2024, where she specialized in photo(electro)catalysis for sustainable hydrogen production. At Macquarie University, she leads several cutting-edge research projects as both sole and co-chief investigator, including the ARENA project (KC012) on accelerating the commercialization of direct solar-to-hydrogen technology (A$2.25M; A$163K at MQ), an ARC Discovery Project (DP250104928) on zero-gap photoelectrochemical ammonia synthesis (A$580K), and the Macquarie University Research Fellowship project on the direct synthesis of earth-abundant bifunctional catalysts (A$848K). Her research portfolio demonstrates a remarkable ability to attract competitive national and industry funding, exceeding A$10 million in cumulative project value through collaborations with industry leaders such as Fortescue Future Industries (FFI). Her earlier work as a main investigator contributed to multiple high-impact projects, including ARENA and FFI-funded initiatives focused on developing low-cost perovskite/silicon semiconductors and macroelectrode electrolysis systems, each driving substantial advances in low-cost green hydrogen production. Beyond academic research, Dr. Zhang has actively engaged with industry, leading consultancy projects like the AEA Ignite initiative (A$489K) for developing durable roll-to-roll functional coatings for next-generation energy devices. Dr. Zhang has achieved an H-index of 21 and over 1,970 citations (Google Scholar, October 2025), reflecting the global influence of her research in energy materials. She has authored 38 peer-reviewed journal papers, 1 book chapter, and 12 granted patents (including one patent that attracted A$833K industrial funding). Her publications are consistently featured in top-tier journals such as Energy & Environmental Science, Advanced Energy Materials, Applied Physics Reviews, Chemical Engineering Journal, Materials Today Energy, Angewandte Chemie International Edition, and Progress in Materials Science. Notably, over 31% of her works rank within the top 10% citation percentiles, and 76% are among the top 25% most cited papers globally. Her contributions also extend to scholarly authorship and thought leadership, including an invited chapter titled “Advances in Perovskite-Based Photocatalysts: Materials Design, Mechanisms, and Applications” in Semiconductors and Semimetals (Elsevier, 2025). Dr. Zhang’s recent works demonstrate the integration of AI and machine learning in catalyst discovery, as seen in her publication “Prospects of AI in Advancing Green Hydrogen Production”.

Profiles: Scopus | Orcid | Google Scholar

Featured Publications

Zhang, D., & Co-authors. (2025, September 25). Minimizing buried interface energy losses via urea phosphate derivatives enable high-efficiency carbon-based mesoscopic perovskite solar cells. Small. https://doi.org/10.1002/smll.202507384

Zhang, D., Pan, W., Lu, H., Wang, Z., Gupta, B., Oo, A. T., Wang, L., Reuter, K., Li, H., Jiang, Y., & Karuturi, S. (2025, September 1). Prospects of AI in advancing green hydrogen production: From materials to applications. Applied Physics Reviews, 12(3), 031335. https://doi.org/10.1063/5.0281416

Attar, F., Riaz, A., Zhang, D., Lu, H., Thomsen, L., & Karuturi, S. (2025, August 15). Advanced NiMoC electrocatalysts precisely synthesized at room temperature for efficient hydrogen evolution across pH ranges. Chemical Engineering Journal, 518, 164494. https://doi.org/10.1016/j.cej.2025.164494

Zhang, D., Pan, W. S., Sharma, A., Shen, H., Lem, O., Saraswathyvilasam, A., Yang, C., Weber, K., Wu, Y., Catchpole, K., Oo, A. T., & Karuturi, S. (2025, March). Over 14% unassisted water splitting driven by immersed perovskite/Si tandem photoanode with Ni-based catalysts. Materials Today Energy, 48, 101809. https://doi.org/10.1016/j.mtener.2025.101809

Wang, P., Oo, A. T., Chen, L., & Zhang, D. (2025). Recent advances of interfacial modification over tantalum nitride photoanodes for solar water oxidation: A mini review. Frontiers in Chemistry, 13, 1600959. https://doi.org/10.3389/fchem.2025.1600959

Zhang, D., Pan, W., Jiang, Y., & Co-authors. (2024, December 28). Defect management and crystallization regulation for high-efficiency carbon-based printable mesoscopic perovskite solar cells via a single organic small molecule. Journal of Materials Chemistry A. https://doi.org/10.1039/d4ta06877g

Ding, J., Zhang, D., Riaz, A., Gu, H., Soo, J. Z., Narangari, P. R., Jagadish, C., Tan, H. H., & Karuturi, S. (2024, November). Scalable amorphous NiFe(OH)x/Fe/graphene bifunctional electrocatalyst via solution-corrosion for water splitting. CCS Chemistry, 6, 2692–2703. https://doi.org/10.31635/ccschem.024.202404423

Zhang, D., & Co-authors. (2024, July 5). Solar-driven ammonia synthesis with Co–TiOx and Ag nanowires enhanced Cu₂ZnSnS₄ photocathodes. Applied Catalysis B: Environmental, 348, 123836. https://doi.org/10.1016/j.apcatb.2024.123836

Jiaming Ni | 2D Materials | Best Researcher Award

Dr. Jiaming Ni | 2D Materials | Best Researcher Award 

Dr. Jiaming Ni | Nanchang hangkong university | China

Jiaming Ni holds a Ph.D. in Materials Science and Engineering from the Autonomous University of San Luis Potosí, Mexico, a Master’s degree in Mechanical and Electrical Engineering from Guilin University of Electronic Technology, and a Bachelor’s degree in Vehicle Engineering from Nanchang University. His research focuses on semiconductor materials, first-principles calculations, and photocatalytic hydrogen production. He has published impactful studies on GaS/XTe₂ heterostructure photocatalysts (International Journal of Hydrogen Energy, IF 7.2), van der Waals heterostructures for hydrogen production (Journal of Materials Chemistry C, IF 7.059), and gas adsorption on doped WSe₂ (Applied Surface Science, IF 6.182).

Author Profile

Scopus | Orcid

Education

From the very beginning of his academic journey, Jiaming Ni demonstrated a keen interest in engineering, materials science, and technological innovation. His foundational education in Vehicle Engineering at the College of Science and Technology, Nanchang University, provided him with a strong technical background in mechanics, design, and manufacturing processes. Eager to expand his expertise, he pursued a Master’s degree in Mechanical and Electrical Engineering at Guilin University of Electronic Technology, where he gained deeper knowledge in interdisciplinary engineering systems. His thirst for innovation and research led him to the Autonomous University of San Luis Potosí, Mexico, where he completed his Ph.D. in Materials Science and Engineering under the guidance of Prof. Shaoxian Song. Throughout his academic journey, Ni developed a strong foundation in semiconductor materials, micro/nano-structures, and advanced computational methods, preparing him for impactful research contributions in his later career.

Experience

After completing his higher education, Jiaming Ni embarked on a career that bridged academia and industry. His early professional role as a Manufacturing Engineer at Semiconductor Manufacturing International Corporation (SMIC) enabled him to apply his technical skills in a highly demanding semiconductor fabrication environment. Later, as a Process Integration Engineer at Guangzhou CanSemi Technology Inc., he worked on optimizing semiconductor production processes, gaining valuable insights into industrial-scale applications of his research expertise. Currently, Ni serves as a Lecturer at Nanchang Hangkong University, where he combines teaching, mentorship, and advanced research to inspire the next generation of engineers and scientists.

Research Focus

Jiaming Ni’s research focuses on semiconductor materials, first-principles calculations, micro- and nano-structure simulations, and the optoelectronic properties of advanced materials. He has made significant contributions to the development of novel two-dimensional (2D) materials, with a particular emphasis on their application in photocatalytic hydrogen production, a promising technology for sustainable energy generation. His expertise also encompasses gas adsorption phenomena and the performance evaluation of alloy materials, addressing challenges in both energy and environmental fields. Among his influential works are studies on GaS/XTe₂ (X = W, Mo) heterostructure photocatalysts for efficient water splitting (International Journal of Hydrogen Energy, IF 7.2), van der Waals heterostructures based on InSe–XS₂ (X = Mo, W) as photocatalysts for hydrogen production (Journal of Materials Chemistry C, IF 7.059), and adsorption of small gas molecules on strained WSe₂ doped with Pd, Ag, Au, and Pt (Applied Surface Science, IF 6.182, cited 9 times). Collectively, these contributions highlight his ability to bridge theoretical computational modeling with practical applications in renewable energy, semiconductor technologies, and environmental protection.

Award and Recognition

Jiaming Ni’s scholarly work has been recognized through publications in high-impact, top-tier journals across the fields of materials science and energy research. His studies have been cited by peers worldwide, reflecting the influence and credibility of his findings. Publishing in Chinese Academy of Sciences (CAS) Zone 1 and Zone 2 journals underscores the quality and international competitiveness of his work. Moreover, his research collaborations with scientists across different countries have further amplified the global reach of his contributions.

Impact and Influence

Through his combined academic and professional endeavors, Ni has contributed to advancing the global understanding of 2D materials, semiconductor device engineering, and sustainable hydrogen production technologies. His work in photocatalytic hydrogen generation addresses one of the most pressing challenges of our time—developing clean, renewable energy sources. In addition, his studies on gas adsorption and alloy performance have implications for environmental monitoring, energy storage, and advanced manufacturing. His career path reflects a unique balance between theoretical research and practical industrial application, making his expertise valuable to both academic and commercial sectors.

Tailoring the electronic and optical properties of layered blue phosphorene/ XC (X=Ge, Si) vdW heterostructures by strain engineering.

Author: Jiaming Ni, Mildred Quintana, Feifei Jia , Shaoxian Song
Journal: Nanostructures
Year: 2021

Adsorption of small gas molecules on strained monolayer WSe2 doped with Pd, Ag, Au, and Pt: A computational investigation.

Author: Jiaming Ni, Wei Wang, Mildred Quintana, Feifei Jia, Shaoxian Song
Journal: Applied Surface Science
Year: 2020

Theoretical investigation of the sensing mechanism of the pure graphene and AL,B,N,P doped mono-vacancy graphene-based methane.

Author: Jiaming Ni, Bingqiao Yang, Feifei Jia, Yulai She, Shaoxian Song, Mildred Quintana
Journal: Chemical Physics Letters
Year: 2018

Conclusion

Jiaming Ni has established himself as a dedicated and innovative researcher whose work seamlessly integrates cutting-edge computational modeling with real-world applications in materials science. His advancements in 2D semiconductor materials, photocatalytic hydrogen production, gas adsorption, and alloy performance analysis not only contribute to the scientific community but also address pressing global challenges in clean energy and environmental sustainability. Through his impactful publications, interdisciplinary expertise, and commitment to innovation, he continues to pave the way for next-generation materials and technologies that hold the potential to transform both industry and society.