Yuan Zhang | Renewable Energy Technologies | Research Excellence Award |

Assist Prof Dr. Yuan Zhang | Renewable Energy Technologies | Research Excellence Award

Shenzhen University | China

Dr. Yuan Zhang is an accomplished Assistant Professor and Research Fellow at the Department of Chemistry and Environmental Engineering, Shenzhen University, recognized internationally for her pioneering contributions to solid oxide fuel cells (SOFCs), electrolysis technologies, and hydrogen energy systems. She earned her Ph.D. in Chemical Engineering from Nanjing Tech University and completed prestigious postdoctoral training at The Hong Kong Polytechnic University and The Hong Kong University of Science and Technology. Dr. Zhang’s research focuses on resolving critical thermo-mechanical and interfacial stability challenges in high-temperature electrochemical energy devices, which are major bottlenecks limiting the commercialization of solid oxide fuel cells and electrolysis systems. Through original concepts such as negative thermal expansion compensation, chemical expansion regulation, and surface/interface reconstruction engineering, she has successfully addressed electrode delamination, thermal mismatch, and catalyst poisoning under extreme operating conditions. Her work has enabled long-life, high-performance SOC operation and provided transformative design strategies applicable to a broad range of high-temperature catalytic materials and energy devices. Dr. Zhang has published over 40 SCI-indexed papers, including 17 as first or corresponding author, in leading journals such as Nature, Nature Communications, Advanced Materials, Advanced Functional Materials, and Applied Catalysis B. Her publications have received more than 3,000 citations, with one ESI Highly Cited Paper and three ESI Hot Papers, reflecting strong global influence. She has served as Principal Investigator for multiple competitive research grants, including NSFC Youth and General Programs, Shenzhen Science Foundation projects, and major industry-academia collaborations, while also acting as Co-PI on large-scale hydrogen energy system initiatives. Beyond research, Dr. Zhang actively contributes to the scientific community as an Early-Career Editorial Board Member of Energy Reviews, a reviewer for top journals, and a member of several professional committees including the Chinese Society of Rare Earths and the Shenzhen Hydrogen Energy and Fuel Cell Association. Her innovations have supported real-world applications, notably contributing to the world’s first open-sea demonstration of direct seawater hydrogen production. In recognition of her excellence, she has received multiple prestigious awards, including national and regional innovation prizes. Dr. Yuan Zhang’s work exemplifies outstanding scientific leadership, originality, and impact in clean energy research, making her a highly deserving candidate for international research recognition.

Citation Metrics (Scopus)

3000
2000
1000
  500
  400
  300
  200
  100
    50
    30
    10
      0

Citations
2504

Documents
71

h-index
24

Citations

h-index

i10-index

View Scopus Profile

Featured Publications

Vladimir Zinoviev | Renewable Energy Technologies | Research Excellence Award

Assoc Prof Dr. Vladimir Zinoviev | Sunotec | Research Excellence Award 

Sunotec | Bulgaria

Professor Vladimir Zinoviev is an accomplished academic and industry expert whose research and professional work focus on energy transformation, sustainable development, and the economics and management of the energy sector. His profile reflects a strong integration of scientific research, strategic leadership, and real-world implementation across renewable energy, smart grids, electric mobility, and energy infrastructure systems. His research addresses critical challenges related to the energy transition, including the deployment of renewable energy sources, integration of photovoltaic power with electric mobility, digitalization of power systems, smart grid development, and the application of artificial intelligence in energy automation. A central theme of his work is the economic and managerial optimization of energy systems, emphasizing policy design, financial engineering, investment strategies, and governance models that support sustainable and resilient energy infrastructures, particularly in Southeast Europe. Professor Zinoviev has contributed extensively to the scientific literature, authoring over 50 peer-reviewed articles, books, and academic publications covering renewable energy systems, energy transmission and distribution, storage technologies, digital power solutions, and energy market transformation. His research outputs demonstrate a balance between theoretical frameworks and applied solutions, supporting evidence-based decision-making for governments, industry stakeholders, and international organizations. In addition to scholarly publications, he has played a key role in large-scale international research projects, including participation in European Union–funded initiatives addressing just energy transition, regional development, and climate neutrality. His work on photovoltaic power generation and electric mobility integration provides important insights into decarbonizing transport systems and enhancing grid flexibility. These contributions strengthen the alignment between energy policy objectives and technological deployment. Professor Zinoviev’s research profile is further distinguished by his extensive engagement with industry-driven innovation. He has led and contributed to numerous renewable energy and infrastructure projects, including solar, wind, biomass, and smart grid implementations, translating research findings into operational energy systems. This strong industry linkage enhances the practical relevance and societal impact of his academic work. Beyond research, he is actively involved in graduate and postgraduate education, contributing to curriculum development and teaching in energy economics, smart grids, and energy project management. His academic leadership supports the training of future professionals capable of navigating complex energy transitions. Overall, Professor Vladimir Zinoviev’s research profile reflects interdisciplinary expertise, international collaboration, and sustained impact at the intersection of energy science, economics, and policy. His work contributes meaningfully to advancing sustainable energy systems, supporting climate goals, and shaping modern energy governance frameworks.

Citation Metrics (Google Scholar)

200
180
160
140
120
100
80
60
40
20
10
0

Citations
123

Documents
50

h-index
8

Citations

Documents

h-index

View Google Scholar Profile

Featured Publications


Charging Infrastructure and E-mobility Integration: Economic and Energy Benefits for Sustainable Grid Management

– International Conference on Communications, Information, Electronic, 2024

Soujanya Reddy Annapareddy | Engineering | Women Researcher Award

Mrs. Soujanyareddy Annapareddy | Engineering | Women Researcher Award

TAE Power Solutions | United States

Mrs. Soujanya Reddy Annapareddy is a seasoned Firmware Automation and Software Test Engineer with over 7.5 years of professional experience in embedded systems testing, automation frameworks, and data-driven validation methodologies. Her research and professional interests lie at the intersection of firmware validation, automation engineering, and intelligent system testing, focusing on how advanced test automation techniques enhance the performance, reliability, and scalability of embedded and IoT systems. At TAE Power Solutions, she has contributed to the automation and validation of Battery Energy Storage System (BESS) control platforms, integrating hardware-in-the-loop (HIL) environments and open-source frameworks such as PyTest, pandas, and matplotlib to improve regression coverage and testing efficiency. Her work explores the application of data analytics, fault-injection methods, and CI/CD pipeline integration in firmware testing to ensure real-world performance and fault tolerance. Her prior experience at Google Inc. involved automation testing for Android devices, wearable technologies, and data center systems, where she developed automation scripts in Python, Go, and C++, applied object-oriented design principles, and leveraged tools such as Mobly, Blueberry, and Buganizer for large-scale system validation. Soujanya’s analytical research focuses on automated testing frameworks, system-level reliability modeling, and signal strength optimization in wireless and connectivity domains. Methodologically, she employs Python-based automation, statistical analysis, and cloud-integrated validation frameworks, with hands-on experience in Linux environments, GCP cloud infrastructure, and RF system automation. Her interdisciplinary expertise bridges firmware engineering, test analytics, and computer science, offering insights into how automation accelerates innovation in embedded systems. Soujanya holds a Master of Science in Computer Technology from Eastern Illinois University and a Bachelor of Technology in Electronics and Communication Engineering from Jawaharlal Nehru Technological University Hyderabad (JNTUH), where she graduated with distinction. Her academic projects and industrial research underscore her commitment to advancing intelligent automation, embedded testing, and data-driven system optimization in modern technology ecosystems.

Profile: Google Scholar

Featured Publications

Annapareddy, S. R. (2025). Edge AI for real-time fault detection in embedded systems. International Journal of Emerging Trends in Computer Science and Information Systems.

Annapareddy, S. R. (2024). Managing power flows and energy efficiency in embedded systems for BESS. IJAIDR – Journal of Advances in Developmental Research, 15(2), 1–5.

Annapareddy, S. R. (2024). Advanced fault detection and diagnostics in embedded control units for BESS. IJSAT – International Journal on Science and Technology, 15(4).

Annapareddy, S. R. (2024). Firmware architecture and safety standards in battery energy storage systems. International Journal of Innovative Research in Engineering.

Annapareddy, S. R. (2024). Optimizing Android device testing with automation frameworks. International Journal of Innovative Research and Creative Technology, 10(4), 1–7.

Annapareddy, S. R. (2024). Real-world applications of Python in firmware and software automation. International Journal of Innovative Research and Creative Technology, 10(2), 1–6.

Annapareddy, S. R. (2024). Advancements in firmware testing and validation techniques. ESP Journal of Engineering & Technology Advancements, 4(3).

Abu Farzan Mitul | Engineering | Best Researcher Award

Dr. Abu Farzan Mitul | Engineering | Best Researcher Award

Leidos | United States

Dr. Abu Farzan Mitul is an accomplished researcher and educator specializing in opto-electronic device fabrication, fiber optic sensing technologies, and nanostructured thin-film materials. His research bridges the intersection of photonics, materials science, and advanced sensing systems — contributing to innovations that enhance environmental monitoring, industrial automation, and biomedical diagnostics. Dr. Mitul earned his Ph.D. in Electrical and Computer Engineering from the University of Texas at El Paso (UTEP), USA, where he designed and developed advanced fiber Bragg grating sensors and thin-film photonic devices for multi-parameter sensing applications. His earlier academic training includes a B.Sc. and M.Sc. in Applied Physics, Electronics, and Communication Engineering from the University of Dhaka, Bangladesh. Throughout his career, Dr. Mitul has collaborated with leading U.S. research institutions and agencies, including the Department of Energy (DOE), Department of Defense (DoD), and NASA, focusing on next-generation optoelectronic and energy-efficient sensing systems. His extensive publication record spans high-impact journals and international conferences in photonics, sensor technology, and materials characterization. In addition to his research, Dr. Mitul has served as a faculty member and laboratory instructor, mentoring undergraduate and graduate students in electronics, photonics, and experimental physics. He is passionate about advancing interdisciplinary research in fiber optic sensing, MEMS/NEMS devices, photonic integrated systems, and nanotechnology-driven device engineering. Dr. Mitul continues to explore innovative pathways toward miniaturized, high-sensitivity photonic systems with applications across environmental, aerospace, and biomedical fields — aligning cutting-edge materials research with sustainable technological development.

Profiles: Orcid | Google Scholar | Linkedin

Featured Publications

Adhikari, N., Dubey, A., Khatiwada, D., Mitul, A. F., Wang, Q., Venkatesan, S., & Qiao, Q. (2015). Interfacial study to suppress charge carrier recombination for high efficiency perovskite solar cells. ACS Applied Materials & Interfaces, 7(48), 26445–26454. https://doi.org/10.1021/acsami.5b08343

Rana, G. M. S. M., Khan, A. A. M., Hoque, M. N., & Mitul, A. F. (2013, December). Design and implementation of a GSM based remote home security and appliance control system. In 2013 2nd International Conference on Advances in Electrical Engineering (ICAEE) (pp. 291–295). IEEE. https://doi.org/10.1109/ICAEE.2013.6750340

Khatiwada, D., Venkatesan, S., Adhikari, N., Dubey, A., Mitul, A. F., Mohammad, L., … & Qiao, Q. (2015). Efficient perovskite solar cells by temperature control in single and mixed halide precursor solutions and films. The Journal of Physical Chemistry C, 119(46), 25747–25753. https://doi.org/10.1021/acs.jpcc.5b08667

Mitul, A. F., Mohammad, L., Venkatesan, S., Adhikari, N., Sigdel, S., Wang, Q., … & Qiao, Q. (2015). Low temperature efficient interconnecting layer for tandem polymer solar cells. Nano Energy, 11, 56–63. https://doi.org/10.1016/j.nanoen.2014.10.030

Venkatesan, S., Ngo, E. C., Chen, Q., Dubey, A., Mohammad, L., Adhikari, N., … & Qiao, Q. (2014). Benzothiadiazole-based polymer for single and double junction solar cells with high open circuit voltage. Nanoscale, 6(12), 7093–7100. https://doi.org/10.1039/C4NR00606H

Islam, M. M., Rafi, F. H. M., Mitul, A. F., Ahmad, M., Rashid, M. A., & Malek, M. F. B. A. (2012, May). Development of a noninvasive continuous blood pressure measurement and monitoring system. In 2012 International Conference on Informatics, Electronics & Vision (ICIEV) (pp. 695–699). IEEE. https://doi.org/10.1109/ICIEV.2012.6317425

 

Mujahid Aziz | Engineering | Best Researcher Award

Prof. Mujahid Aziz | Engineering | Best Researcher Award

Cape Peninsula University of Technology | South Africa

Professor Mujahid Aziz is a distinguished academic and research leader serving as the Assistant Dean: Learning & Teaching in the Faculty of Engineering and the Built Environment (FEBE) at the Cape Peninsula University of Technology (CPUT) in South Africa. In this leadership role, he oversees and enhances academic excellence across eight departments within the faculty, which collectively serve nearly 10,000 students, including a growing cohort of postgraduate scholars. As a champion of academic transformation, Prof. Aziz is deeply committed to promoting innovative teaching practices, curriculum modernization, and student-centered learning within engineering education. His leadership is instrumental in aligning the faculty’s academic strategies with industry relevance, sustainability goals, and the national development agenda. With over 23 years of experience as an Associate Professor of Chemical Engineering, Prof. Aziz has established himself as a transformative educator, researcher, and mentor. His academic journey reflects a sustained dedication to advancing both the theoretical and practical dimensions of environmental and chemical engineering. Throughout his career, he has supervised numerous postgraduate students and contributed to the development of engineering curricula that integrate sustainability, innovation, and applied research. His pedagogical philosophy emphasizes experiential learning and the development of problem-solving skills essential for addressing real-world engineering challenges, particularly in water and environmental systems. As the Principal Investigator of the Environmental Engineering Research Group (EERG), Prof. Aziz leads multidisciplinary research focused on sustainable water and wastewater treatment technologies. His work is internationally recognized, with publications in high-impact journals such as Desalination, MDPI Membranes, MDPI Water, and Environmental Processes. Recent research endeavors have explored cutting-edge methods for biofouling mitigation in polyamide thin-film composite reverse osmosis membranes, particularly through polymer grafting and nanoparticle coating. These innovations are pivotal for improving the treatment of municipal bioreactor secondary effluent and enhancing the efficiency and longevity of membrane systems used in desalination and wastewater reuse. Prof. Aziz’s research portfolio is characterized by a strong interdisciplinary approach that bridges materials science, chemical process design, and environmental sustainability. His areas of specialization encompass membrane technology, wastewater reuse, electrochemical and adsorption processes, brine management, and zero liquid discharge (ZLD) systems. His work addresses critical environmental challenges associated with water scarcity and industrial pollution, offering viable pathways for circular water economies and resource recovery. His pursuit of innovation in micropollutant removal, membrane fouling control, and electro-oxidation for water reuse reflects his vision of achieving sustainable and intelligent environmental engineering solutions. Through his academic leadership, pioneering research, and commitment to mentorship, Prof. Mujahid Aziz continues to make a profound impact on the future of engineering education and sustainable water technology development in South Africa and beyond.

Profiles: Orcid | Google Scholar

Featured Publications

Aziz, M., & Ojumu, T. (2020). Exclusion of estrogenic and androgenic steroid hormones from municipal membrane bioreactor wastewater using UF/NF/RO membranes for water reuse application. Membranes, 10(3), 37. https://doi.org/10.3390/membranes10030037

Aziz, M., & Kasongo, G. (2021). The removal of selected inorganics from municipal membrane bioreactor wastewater using UF/NF/RO membranes for water reuse application: A pilot-scale study. Membranes, 11(2), 1–14. https://doi.org/10.3390/membranes11020104

Myburgh, D. P., Aziz, M., Roman, F., Jardim, J., & Chakawa, S. (2019). Removal of COD from industrial biodiesel wastewater using an integrated process: Electrochemical oxidation with IrO₂–Ta₂O₅/Ti anodes and chitosan powder. Environmental Processes, 6(4), 819–840. https://doi.org/10.1007/s40710-019-00393-5

Kasongo, G., Steenberg, C., Morris, B., Kapenda, G., Jacobs, N., & Aziz, M. (2019). Surface grafting of polyvinyl alcohol (PVA) cross-linked with glutaraldehyde (GA) to improve resistance to fouling of aromatic polyamide thin film composite reverse osmosis membranes. Water Practice & Technology, 14(3), 614–624. https://doi.org/10.2166/wpt.2019.042

Chakawa, S., & Aziz, M. (2021). Investigating the result of current density, temperature, and electrolyte concentration on COD subtraction of petroleum refinery wastewater using response surface methodology. Water, 13(6), 835. https://doi.org/10.3390/w13060835

Aziz, M., & Kasongo, G. (2019). Scaling prevention of thin film composite polyamide reverse osmosis membranes by Zn ions. Desalination, 464, 76–83. https://doi.org/10.1016/j.desal.2019.04.006

Chinedu Okere | Engineering | Best Researcher Award

Dr. Chinedu Okere | Engineering | Best Researcher Award 

University of Houston | United States

Dr. Chinedu (Junior) Okere is a dynamic early-career researcher whose interests span subsurface hydrogen generation, large-scale hydrogen storage in geological formations, experimental and numerical modelling of CO₂ capture, utilisation and storage (CCUS), methane leakage from orphaned wells, and drilling/fracturing fluid design and formation-damage mitigation in petroleum reservoirs. His professional trajectory has taken him from graduate research at the China University of Petroleum (Beijing) (M.Eng., 2022) to doctoral studies at the Texas Tech University (Ph.D., 2025) and onward to a post-doctoral appointment in the Department of Petroleum Engineering at the University of Houston (from mid-2025). In these roles he has supervised PhD students, managed a U.S. Department of Energy-funded CarbonSAFE project on CO₂ storage, and led the development of grant proposals, patents and peer-reviewed publications. According to his Google Scholar profile he has to date achieved 659 citations and an h-index of 15, with an i10-index of 19. His publication record includes a broad spectrum of articles (20+, depending on counting method) covering topics from “clean hydrogen generation from petroleum reservoirs” to fuzzy-ball fluid‐induced damage in tight reservoirs, reservoir suitability for hydrogen storage, and methane leakage from abandoned wells. Most recently, his first‐author papers (2024-2025) address techno-economic feasibility of in-situ hydrogen production from petroleum reservoirs, SARA-based experimental and numerical investigations of in-situ hydrogen generation, and comparative numerical studies for optimisation of hydrogen production and CCUS strategies. In recognition of his impact he has received numerous honours including the 2024 International Inventions Awards – Hydrogen Energy Best Researcher Award, and the Society of Petroleum Engineers Permian Basin Scholarship. With strong interdisciplinary credentials spanning petroleum engineering, energy systems, reservoir simulation, and hydrogen/CCUS technologies, Dr. Okere stands out as an emerging scholar bridging the conventional oil-&-gas domain with the clean/hydrogen energy transition. His h-index of 15 reflects a solid early‐career impact: it means he has at least 15 publications each cited at least 15 times. (The h-index concept was originally proposed by J. E. Hirsch as a simple measure of productivity and citation impact. Going forward, his strong publication momentum, growing citation base and leadership in grant/industry-adjacent projects suggest that he is well-positioned to further increase both his research output and influence in the hydrogen/CCUS engineering community.

Profiles: Scopus | Orcid | Google Scholar 

Featured Publications

Okere, C. J., & Sheng, J. J. (2023). Review on clean hydrogen generation from petroleum reservoirs: Fundamentals, mechanisms, and field applications. International Journal of Hydrogen Energy, 101.

Edouard, M. N., Okere, C. J., Ejike, C., Dong, P., & Suliman, M. A. M. (2023). Comparative numerical study on the co-optimization of CO₂ storage and utilization in EOR, EGR, and EWR: Implications for CCUS project development. Applied Energy, 347, 121448.

Eyitayo, S. I., Okere, C. J., Hussain, A., Gamadi, T., & Watson, M. C. (2024). Synergistic sustainability: Future potential of integrating produced water and CO₂ for enhanced carbon capture, utilization, and storage (CCUS). Journal of Environmental Management, 351, 119713.

He, J., Okere, C. J., Su, G., Hu, P., Zhang, L., Xiong, W., & Li, Z. (2021). Formation damage mitigation mechanism for coalbed methane wells via refracturing with fuzzy-ball fluid as temporary blocking agents. Journal of Natural Gas Science and Engineering, 90, 103956.

Okere, C. J., Su, G., Zheng, L., Cai, Y., Li, Z., & Liu, H. (2020). Experimental, algorithmic, and theoretical analyses for selecting an optimal laboratory method to evaluate working fluid damage in coal bed methane reservoirs. Fuel, 282, 118513.

Tao, X., Okere, C. J., Su, G., & Zheng, L. (2022). Experimental and theoretical evaluation of interlayer interference in multi-layer commingled gas production of tight gas reservoirs. Journal of Petroleum Science and Engineering, 208, 109731.

Okere, C. J., & Sheng, J. J. (2024). A new modelling approach for in-situ hydrogen production from heavy oil reservoirs: Sensitivity analysis and process mechanisms. Energy, 302, 131817.

Opara, S. U., & Okere, C. J. (2024). A review of methane leakage from abandoned oil and gas wells: A case study in Lubbock, Texas, within the Permian Basin. Energy Geoscience, 5(3), 100288.

Longxing Liao | Mechanical Engineering | Best Researcher Award | 13160

Dr. Longxing Liao | Mechanical Engineering | Best Researcher Award

Dr. Longxing Liao, Jimei University, China

Dr. Longxing Liao is an accomplished researcher and academic affiliated with Jimei University, China. With expertise in marine engineering and renewable energy systems, Dr. Liao focuses on innovative solutions for sustainable development in coastal and maritime environments. He has contributed to cutting-edge research in renewable energy integration, resource optimization, and advanced marine technology applications. Dr. Liao’s work aims to promote environmental sustainability and economic growth through the development of efficient energy systems and technologies, solidifying his reputation as a forward-thinking leader in his field.

Profile

Scopus

Early Academic Pursuits 🎓

Dr. Longxing Liao embarked on his academic journey with a strong passion for engineering and innovation. He obtained his Doctor of Philosophy degree, laying the groundwork for a career focused on advancing knowledge and technological progress. Early in his studies, Dr. Liao developed an interest in high-performance manufacturing processes and chemical mechanical polishing, which would later become his primary areas of research. This foundational phase of his academic career equipped him with the technical expertise and critical thinking skills necessary to excel in the competitive field of mechanical and marine engineering.

Professional Endeavors 🔧

Currently, Dr. Liao serves as a lecturer and postgraduate supervisor at the School of Marine Equipment and Mechanical Engineering at Jimei University, China. In this capacity, he has been instrumental in shaping the next generation of engineers and researchers. He is not only an educator but also a hands-on researcher who has managed several high-impact projects. Dr. Liao has successfully secured funding for research initiatives from prestigious organizations, including:

  • The National Natural Science Foundation of China
  • Provincial and Municipal Natural Science Foundations
  • The Provincial Education Department

These projects have allowed Dr. Liao to explore innovative approaches to mechanical engineering challenges, emphasizing sustainability and efficiency.

Contributions and Research Focus 🛠️

Dr. Liao’s research primarily focuses on chemical mechanical polishing and high-performance manufacturing. His work in these areas has led to the publication of over 20 SCI-indexed papers in top-tier international journals, such as Applied Surface Science and the Journal of Manufacturing Processes. These publications are widely recognized for their innovative methodologies and impactful findings, contributing significantly to the body of knowledge in manufacturing and surface science.

Additionally, Dr. Liao holds an impressive portfolio of over 20 invention patents, with many ranked in the top two positions. His patented innovations demonstrate practical applications of his research, particularly in optimizing manufacturing processes and advancing material sciences.

Accolades and Recognition 🏆

Dr. Liao’s contributions have not gone unnoticed. Among his many accolades are:

  • Second Prize of the Liaoning Provincial Patent Award in 2022 (ranked 2/6).
  • First Prize of the China Industry-University-Research Institute Collaboration Innovation Achievement Award (ranked 9/10).

Dr. Liao’s commitment to fostering talent is evident in his guidance of undergraduate teams to achieve notable success:

  • Two National Third Prizes in the China Undergraduate Mechanical Engineering Innovation and Creativity Competition.
  • One National Second Prize in the National College Students’ Social Practice and Science Contest on Energy Saving, Emission Reduction, and Environmental Protection.

Furthermore, he was personally honored with the First Prize in the 2024 Young Teachers’ Award, highlighting his dual excellence as an educator and researcher.

Publication Top Notes📝

Author: Luo, S., Liao, L., Wang, Y.

Journal: Manufacturing Processes

Year: 2024

Author: Wang, B., Liao, L., Zhou, M., Lin, Q., Chen, L.

Journal: The International Society for Optical Engineering, 

Year: 2024

Author: Liao, L., Luo, S., Chang, X., Li, S., Shutin, D.

Journal: Manufacturing Processes

Year: 2023

Author: Mo, J., Gong, X., Luo, S., Chang, X., Liao, L.

Journal: Advances in Mechanical Engineering

Year: 2023,

Author: Chang, X., Renqing, D., Liao, L., Huang, Y., Luo, S.

Journal: Tribology International

Year:  2023