Levan Chkhartishvili | Materials Science | Best Researcher Award

Prof Dr. Levan Chkhartishvili | Materials Science | Best Researcher Award

Professor at Georgian Technical University, Georgia.

Levan Chkhartishvili is a renowned physicist and materials scientist, holding a Doctor of Sciences degree in Physics and Mathematics. He is a Professor in the Department of Engineering Physics at Georgian Technical University and a Senior Researcher at the Semiconducting and Composite Materials Laboratory at the F. Tavadze Metallurgy and Materials Science Institute. His research focuses on the electronic structure of condensed matter, nanostructures, transport phenomena, and nanocomposite materials, particularly boron-containing alloys and compounds. Dr. Chkhartishvili has received several prestigious awards, including the Georgian National Academy of Sciences’ Certificate of Honor for Scientific Achievements in Nanotechnologies and the Albert Einstein Award of Excellence. He has contributed extensively to scientific literature through numerous publications and book chapters, and continues to mentor young scientists in the field.

Professional Profiles:

Education

Levan Chkhartishvili earned his Doctor of Sciences degree in Physics and Mathematics from the Georgian Technical University. Prior to this, he completed his undergraduate and graduate studies in Theoretical Physics at the Faculty of Physics, I. Javakhishvili Tbilisi State University, and pursued doctoral studies in Solid State Physics at the F. Tavadze Metallurgy and Materials Science Institute, focusing on Boron, its Alloys, and Compounds.

Professional Experience

Currently, Dr. Chkhartishvili holds the position of Professor in the Department of Engineering Physics at the Georgian Technical University and serves as a Senior Researcher at the Semiconducting and Composite Materials Laboratory, F. Tavadze Metallurgy and Materials Science Institute. Over the years, he has held various roles including Associate Professor at Ilia State University, Scientist at “Liquid Light” Inc. Labs, and Professor at “IChTEU” Ltd, Faculty of Information Technologies.

Research Interests

Dr. Chkhartishvili’s research interests span a wide range of topics including the electronic structure of condensed matter, geometry of nanostructures, transport phenomena in solids, nanocomposite materials, Boron and boron-containing alloys, compounds, and composites, isotopic effects, and medical (health) physics.

Research Grants

He has secured several research grants, including projects funded by the Shota Rustaveli National Science Foundation of Georgia (SRNSFG) focusing on boron-containing materials, nanopowder synthesis, semiconductor nanomaterials, and growth technologies for nanowires and gas sensors.

Awards and Honors

Dr. Chkhartishvili has received recognition for his scientific contributions, including the Georgian National Academy of Sciences’ Certificate of Honor for Nanotechnologies, the Albert Einstein Award of Excellence, and inclusion in prestigious publications such as the “2000 Outstanding Intellectuals of the 21st Century” and “Who’s Who in the World.”

Research Skills

His expertise includes advanced knowledge in the synthesis and characterization of nanomaterials, development of semiconductor devices, and modeling of climate change processes. He has demonstrated proficiency in securing and managing research grants and mentoring young scientists in their academic pursuits

Publications

  1. Magnetite-doped nanopowder boron nitride for 10B delivery agent in BNCT
    • Makatsaria, S., Chkhartishvili, L., Barbakadze, N., Oboladze, S., Chedia, R.
    • Published in Solid State Sciences, 2024, volume 154, article 107614.
  2. Growth of 2D boron materials
    • Chkhartishvili, L.
    • Published in Handbook of Emerging Materials for Sustainable Energy, 2024, pages 921–960.
  3. Obtaining Boron Carbide and Nitride Matrix Nanocomposites for Neutron-Shielding and Therapy Applications
    • Chkhartishvili, L., Makatsaria, S., Gogolidze, N., Tsiskarishvili, R., Chedia, R.
    • Published in Condensed Matter, 2023, volume 8(4), article 92.
  4. Effect of cobalt additive on phases formation in boron carbide matrix composites B4C–(Ti,Zr)B2–W2B5
    • Chkhartishvili, L., Mikeladze, A., Tsagareishvili, O., Korkia, T., Chedia, R.
    • Published in Solid State Sciences, 2023, volume 145, article 107339.
  5. Boron carbide based ceramics for dry friction units
    • Kvatchadze, V., Bairamashvili, I., Mikeladze, A., Mestvirishvili, Z., Chkhartishvili, L.
    • Published in Solid State Sciences, 2023, volume 142, article 107244.
  6. Advanced Boron Carbide Matrix Nanocomposites Obtained from Liquid-Charge: Focused Review
    • Chkhartishvili, L., Mikeladze, A., Tsagareishvili, O., Buzariashvili, M., Chedia, R.
    • Published in Condensed Matter, 2023, volume 8(2), article 37.
  7. Modeling and X-ray Analysis of Defect Nanoclusters Formation in B4C under Ion Irradiation
    • Mirzayev, M.N., Donkov, A.A., Popov, E.A., Trukhanov, A.V., Trukhanov, S.V.
    • Published in Nanomaterials, 2022, volume 12(15), article 2644.
  8. Relative Stability of Boron Planar Clusters in Diatomic Molecular Model
    • Chkhartishvili, L.
    • Published in Molecules, 2022, volume 27(5), article 1469.
  9. Carbon and isostructural boron nitride nanomaterials doped with ferromagnetic clusters
    • Chkhartishvili, L., Rukhadze, L., Margiev, B., Tsagareishvili, O., Darchiashvili, M.
    • Published in Fundamentals and Industrial Applications of Magnetic Nanoparticles, 2022, pages 165–233.
  10. New Low-Temperature Method of Synthesis of Boron Carbide Matrix Ceramics Ultra-Dispersive Powders and their Spark Plasma Sintering
    • Chkhartishvili, L., Mikeladze, A., Jalabadze, N., Korkia, T., Chedia, R.
    • Published in Solid State Phenomena, 2022, volume 331 SSP, pages 173–184.

 

Fangyuan Hu | Materials Science | Best Researcher Award

Prof Dr. Fangyuan Hu | Materials Science | Best Researcher Award

Professor Doctoral at Walter Sisulu University, South Africa.

Fangyuan Hu is a distinguished academic and researcher currently serving as Deputy Dean at the School of Materials Science and Engineering, Dalian University of Technology. He earned his Ph.D. in Polymer Chemistry and Physics from Dalian University of Technology in 2014, followed by a successful tenure as a postdoctoral fellow at the same institution. Hu is recognized as a key member of China’s Ministry of Science and Technology innovation team, with extensive experience leading national research projects and fostering collaborations between academia and industry. His research focuses on advanced materials for energy storage and he has published widely, holds numerous patents, and contributes actively to the scientific community through editorial roles and professional memberships.

Professional Profiles:

Education 🎓

Received Ph.D. degree from Dalian University of Technology (DUT) in 2014, majoring in Polymer Chemistry and Physics.

Professional Experience

Worked as a postdoctoral fellow at Dalian University of Technology (DUT) after obtaining Ph.D. Currently serving as Deputy Dean at the School of Materials Science and Engineering, DUT. Extensive experience includes leadership roles in national research projects and collaborations with industry and academic bodies.

Research Interest

Fangyuan Hu, currently serving as Deputy Dean at the School of Materials Science and Engineering, Dalian University of Technology, has established a prominent research profile centered on cutting-edge advancements in energy storage materials and technologies. With a Ph.D. in Polymer Chemistry and Physics from Dalian University of Technology and extensive postdoctoral experience within the institution, Hu’s research focuses on developing novel electrode materials based on rigid aromatic heterocyclic polymers. Additionally, Hu explores high ionic conductivity, high-temperature resistant polymer electrolytes, and the design of intelligent energy devices. These endeavors not only contribute significantly to the academic field but also foster collaborations with industry and national research projects, demonstrating Hu’s leadership in advancing sustainable energy solutions.

Award and Honors

Fangyuan Hu has received several prestigious awards and honors for his outstanding contributions to materials science and engineering, particularly in the field of energy materials. These accolades recognize his leadership and innovative research in developing novel electrode materials and high-performance energy devices. Hu’s achievements have been celebrated with awards from national bodies and industry partners, highlighting his significant impact on advancing sustainable energy solutions through pioneering research and collaborations.

Research Skills

Fangyuan Hu possesses exceptional skills in polymer chemistry, materials science, and electrochemistry. His expertise includes the development of rigid aromatic heterocyclic polymer-based electrode materials, high-temperature resistant polymer electrolytes, and intelligent energy device architectures. Hu is adept at leading interdisciplinary research projects, publishing prolifically in high-impact journals, and securing numerous patents. He demonstrates strong leadership in academic and industry collaborations, contributing significantly to advancements in energy storage technologies and sustainable materials innovation.

Publications

  1. An all-biomaterials-based aqueous binder based on adsorption redox-mediated synergism for advanced lithium–sulfur batteries
    • Year: 2024
    • Citations: 0
    • Authors: Jiang, W., Zhang, T., Mao, R., Jian, X., Hu, F.
    • Journal: eScience
  2. Flexible carbon fiber membrane derived from polypropylene for symmetric quasi-solid-state supercapacitors
    • Year: 2024
    • Citations: 0
    • Authors: Liu, Q., Yang, M., Deng, Y., Jian, X., Chen, Y.
    • Journal: Journal of Power Sources
  3. Electrospun Core-Shell Carbon Nanofibers as Free-Standing Anode Materials for Sodium-Ion Batteries
    • Year: 2024
    • Citations: 0
    • Authors: Li, B., Pei, M., Qu, Y., Jian, X., Hu, F.
    • Journal: ACS Applied Nano Materials
  4. Advanced Polymers in Cathodes and Electrolytes for Lithium–Sulfur Batteries: Progress and Prospects
    • Year: 2024
    • Citations: 3
    • Authors: Song, Z., Jiang, W., Li, B., Jian, X., Hu, F.
    • Journal: Small
  5. Ten-Minute Synthesis of a New Redox-Active Aqueous Binder for Flame-Retardant Li-S Batteries
    • Year: 2024
    • Citations: 7
    • Authors: Zhang, T., Li, B., Song, Z., Jian, X., Hu, F.
    • Journal: Energy and Environmental Materials
  6. “Like Compatible Like” Strategy Designing Strong Cathode-Electrolyte Interface Quasi-Solid-State Lithium–Sulfur Batteries
    • Year: 2024
    • Citations: 2
    • Authors: Song, Z., Wang, L., Jiang, W., Jian, X., Hu, F.
    • Journal: Advanced Energy Materials
  7. A Small-Molecule Organic Cathode with Extended Conjugation toward Enhancing Na+ Migration Kinetics for Advanced Sodium-Ion Batteries
    • Year: 2024
    • Citations: 1
    • Authors: Yao, Y., Pei, M., Su, C., Jian, X., Hu, F.
    • Journal: Small
  8. 3D Adsorption-Mediator Network Polymer Binders Improve Redox Kinetics and Flame Retardant Performance for High Loading Lithium–Sulfur Batteries
    • Year: 2023
    • Citations: 7
    • Authors: Li, B., Zhang, T., Song, Z., Jian, X., Hu, F.
    • Journal: Advanced Functional Materials
  9. Skeleton-flesh shape of multipath Li+ transport and compatible interfacial composite solid electrolyte for stable Li-metal batteries
    • Year: 2023
    • Citations: 1
    • Authors: Wang, X., Dong, X., Song, X., Huang, H., Qi, M.
    • Journal: Journal of Energy Storage
  10. Promising single-atom catalysts for lithium-sulfur batteries screened by theoretical density functional theory calculations
    • Year: 2023
    • Citations: 0
    • Authors: Song, C., Hu, F., Zhang, T., Yao, M., Jian, X.
    • Journal: Science China Materials