Prashant Singh | Materials Science | Distinguished Scientist Award

Prof. Dr. Prashant Singh | Materials Science | Distinguished Scientist Award

Atma Ram Sanatan Dharma College, University of Delhi | India

Prof. Prashant Singh is a distinguished chemist and academic leader currently serving in the Department of Chemistry at Atma Ram Sanatan Dharma College, University of Delhi. With a career spanning teaching, research, and academic administration, he has made significant contributions to the fields of coordination chemistry, photochemistry, and materials science, with a particular emphasis on developing innovative luminescent coordination compounds and exploring their photophysical and catalytic properties. Prof. Singh obtained his B.Sc. and M.Sc. degrees from the University of Delhi before pursuing a Ph.D. in Chemistry at the Indian Institute of Technology (IIT) Delhi. His doctoral research centered on the design and synthesis of metal complexes with potential applications in light-emitting materials and photochemical processes—laying the foundation for his enduring interest in functional coordination compounds. Throughout his academic journey, Prof. Singh has demonstrated excellence in both research and teaching. He has guided numerous undergraduate and postgraduate research projects and has been instrumental in promoting inquiry-based learning and laboratory innovation in chemistry education. His research work encompasses diverse areas, including the synthesis of Schiff base and polypyridyl ligands, transition metal complexes, fluorescence quenching studies, and the development of new materials with optoelectronic relevance. Prof. Singh has authored and co-authored several research papers in reputed international journals and presented his findings at various national and international conferences. He has also contributed to academic book chapters and served as a reviewer for multiple scientific journals. Beyond his research, he has been deeply involved in academic governance and community engagement. As President of the ANDC Alumni Association and a key member of multiple institutional committees, he has fostered strong alumni relations and advanced institutional growth through collaborative initiatives. A passionate educator, Prof. Singh has received accolades for his innovative pedagogical methods and dedication to student mentorship. His commitment to bridging theoretical chemistry with experimental practice has inspired many students to pursue higher studies and research careers in chemistry and related disciplines. In addition to his teaching and research, Prof. Singh actively contributes to science outreach and public engagement, encouraging interdisciplinary collaboration and sustainable scientific development. He continues to explore emerging areas such as green chemistry and materials for energy applications, aligning his research interests with global scientific priorities. Prof. Prashant Singh stands out as a scholar whose academic rigor, leadership, and service to education embody the highest ideals of the University of Delhi. His work continues to impact both the academic community and society, contributing to the advancement of chemical sciences and the nurturing of future generations of researchers.

Profiles: Scopus | Google Scholar

Featured Publications

H, W., Naghavi, M., Allen, C., Barber, R. M., Bhutta, Z. A., Carter, A., Casey, D. C., et al. (2016). Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: A systematic analysis for the Global Burden of Disease Study 2015. The Lancet, 388(10053), 1459–1544. https://doi.org/10.1016/S0140-6736(16)31012-1

Tyagi, S., Sharma, B., Singh, P., & Dobhal, R. (2013). Water quality assessment in terms of water quality index. American Journal of Water Resources, 1(3), 34–38. https://doi.org/10.12691/ajwr-1-3-3

Singh, R. P., Shukla, V. K., Yadav, R. S., Sharma, P. K., Singh, P. K., & Pandey, A. C. (2011). Biological approach of zinc oxide nanoparticles formation and its characterization. Advanced Materials Letters, 2(4), 313–317. https://doi.org/10.5185/amlett.2011.1216

Singh, R., Singh, Y., Xalaxo, S., Verulkar, S., Yadav, N., Singh, S., Singh, N., et al. (2016). From QTL to variety—Harnessing the benefits of QTLs for drought, flood and salt tolerance in mega rice varieties of India through a multi-institutional network. Plant Science, 242, 278–287. https://doi.org/10.1016/j.plantsci.2015.08.008

Rana, R. S., Singh, P., Kandari, V., Singh, R., Dobhal, R., & Gupta, S. (2017). A review on characterization and bioremediation of pharmaceutical industries’ wastewater: An Indian perspective. Applied Water Science, 7(1), 1–12. https://doi.org/10.1007/s13201-014-0225-3

Bhatt, D. L., Steg, P. G., Mehta, S. R., Leiter, L. A., Simon, T., Fox, K., Held, C., et al. (2019). Ticagrelor in patients with diabetes and stable coronary artery disease with a history of previous percutaneous coronary intervention (THEMIS-PCI): A phase 3, placebo-controlled trial. The Lancet, 394(10204), 1169–1180. https://doi.org/10.1016/S0140-6736(19)31887-2

Sridhara, S. R., DiRenzo, M., Lingam, S., Lee, S. J., Blazquez, R., Maxey, J., et al. (2011). Microwatt embedded processor platform for medical system-on-chip applications. IEEE Journal of Solid-State Circuits, 46(4), 721–730. https://doi.org/10.1109/JSSC.2011.2107290

Aggarwal, S., Negi, S., Jha, P., Singh, P. K., Stobdan, T., Pasha, M. A. Q., Ghosh, S., et al. (2010). EGLN1 involvement in high-altitude adaptation revealed through genetic analysis of extreme constitution types defined in Ayurveda. Proceedings of the National Academy of Sciences, 107(44), 18961–18966. https://doi.org/10.1073/pnas.1006108107

Bramhaiah Kommula | Materials Science | Best Researcher Award

Assist Prof Dr. Bramhaiah Kommula | Materials Science | Best Researcher Award

Assist Prof Dr. Bramhaiah Kommula | St. Joseph’s University Bangalore | India

Dr. Bramhaiah Kommula is an accomplished researcher and academic currently serving as an Assistant Professor in the Department of Chemistry at St. Joseph’s University, Bengaluru. His research embodies a multidisciplinary approach at the intersection of nanomaterials, photochemistry, and sustainable energy, with a focus on developing advanced functional luminescent nanomaterials for energy conversion, storage, and environmental remediation. Dr. Kommula earned his Ph.D. in Chemistry from Mangalore University in 2018 under the supervision of Dr. Neena S. John at the Centre for Nano and Soft Matter Sciences (CeNS), Bengaluru, where he investigated the “Synthesis and Properties of Graphene-Based Hybrid Materials Employing Chemical Routes.” Following his doctoral studies, Dr. Kommula pursued postdoctoral research at prestigious institutes including IISER Berhampur (2019–2022) with Dr. Santanu Bhattacharyya and IISER Mohali (2022–2024) with Prof. Ujjal K. Gautam. His postdoctoral work focused on the design and engineering of carbon-based nanostructures and their photocatalytic applications in solar fuel generation, hydrogen evolution, and selective organic transformations. He also contributed to the development of metal-free, waste-derived carbon dots and explored their photophysical properties for green hydrogen production, CO₂ reduction, and photoinduced organic catalysis. Dr. Kommula’s current research at St. Joseph’s University integrates nanomaterial synthesis, photophysical studies, and energy applications, emphasizing sustainable approaches to convert plastic waste into high-value carbon dots (CDs) and utilize them as efficient metal-free photocatalysts. Dr. Kommula has also authored several book chapters published by Springer Nature and holds a provisional Indian patent on graphitic carbon dots. Dr. Kommula’s research excellence has been acknowledged through several prestigious fellowships, including Institute Postdoctoral Fellowships from IISER Mohali and IISER Berhampur, and DST Senior and Junior Research Fellowships. His scientific leadership is evident in his ongoing supervision of three Ph.D. students and his submission of major national funding proposals under ANRF and DST schemes aimed at developing sustainable photocatalytic systems for hydrogen and value-added chemical production. Overall, Dr. Bramhaiah Kommula’s research exemplifies innovation-driven science that bridges materials chemistry and renewable energy technologies. His long-term goal is to pioneer eco-friendly nanomaterials that transform environmental waste into useful resources, contributing significantly toward achieving sustainable energy solutions and carbon-neutral technologies for the future.

Profiles: Orcid | Google Scholar

Featured Publications

Kommula, B., & Sriramadasu, V. K. (2025). Room temperature red phosphorescence enabled by alkali treatment in niobium carbide-derived carbon dots. Journal of Luminescence, 274, 121591. https://doi.org/10.1016/j.jlumin.2025.121591

Roy, R. S., Sil, S., Mishra, S., Banoo, M., Swarnkar, A., Kommula, B., De, A. K., & Gautam, U. K. (2025). Layer width engineering in carbon nitride for enhanced exciton dissociation and solar fuel generation. ACS Materials Letters, 7(4), 1385–1393.

Mandal, R., Biswal, J. R., Kommula, B., & Bhattacharyya, S. (2025). 2,2′:5′,2″:5″,2‴‐Quaterthiophene nanoparticles and single-walled CNT composite: An organic nanohybrid for solar H₂ production and simultaneous photoreformation of plastic wastes. ChemCatChem, 17(3), e202500307.

Kommula, B., & Gautam, U. K. (2025). A two-step strategy for residue-free chemical conversion of plastic waste to carbon dots: Upscaling and solvent recycling prospects. Carbon, 234, 119960.

Dutta, B., Kommula, B., Kanwar, K., Gautam, U. K., & Sarma, D. (2025). Oxygen-harvesting carbon dot photocatalysts for ambient tandem oxidative synthesis of quinazolin-4(3H)-ones. Green Chemistry, 27(1), Article D5GC00962F.

Kommula, B., Kanwar, K., & Gautam, U. K. (2024). Waste polyethylene-derived carbon dots: Administration of metal-free oxidizing agents for tunable properties and photocatalytic hyperactivity. ACS Applied Materials & Interfaces, 16(31), 39470–39481.

Kawther Meliani | Materials Science | Best Researcher Award | 13650

Mrs. Kawther Meliani | Materials Science | Best Researcher Award 

Laboratory of Physics of Experimental Techniques and its Applications | Algeria

Dr. Kawther Meliani is a dedicated researcher and Ph.D. candidate in Material Physics at the University of Medea, Algeria, affiliated with the Laboratory of Physics of Experimental Techniques and its Applications. Her core research focuses on Heusler alloys — specifically their structural, magnetic, electronic, and thermoelectric properties — which have wide-ranging applications in spintronics and energy conversion technologies. She utilizes a multidisciplinary approach, combining Density Functional Theory (DFT) simulations using tools like WIEN2k, Quantum ESPRESSO, and CASTEP with experimental synthesis and characterization techniques to validate theoretical models and accelerate materials discovery. Dr. Meliani has published three research papers in reputable SCI and Scopus-indexed journals, including Journal of Alloys and Compounds (Elsevier), Physica B: Condensed Matter, and the Brazilian Journal of Physics. Her publications have collectively received 9 citations, and she currently holds an h-index of 2, demonstrating early-career research impact and growing academic visibility. In addition to her publication record, she has participated in international conferences and research training, including a self-financed one-month collaboration at the University of Girona in Spain, and is preparing for further collaboration at Tohoku University in Japan. Dr. Meliani has made significant contributions to understanding the stability and electronic structure of full and half-metallic Heusler compounds, which are essential for developing next-generation spintronic devices and thermoelectric generators. Her work supports the design of functional materials with high performance and sustainability, aligned with global scientific priorities. Beyond her research, she is actively engaged in undergraduate teaching, fostering scientific curiosity and technical competence in physics students. With her commitment to innovation, cross-border collaboration, and academic rigor, Dr. Kawther Meliani represents a promising and impactful figure in the field of material physics. Her integration of theoretical modeling with hands-on experimentation sets her apart as a researcher who bridges scientific theory and real-world applications. She is a highly deserving candidate for the Best Researcher Award in recognition of her contributions and continued potential for scientific excellence.

Profiles: Scopus | Orcid | Google Scholar

Featured Publications

Meliani, K., Haireche, S., Bouchenafa, M., Elbaa, M., Douakh, S., & Chiker, R. (2024). Comprehensive analysis of the structural, electronic, elastic, and optical properties of SrS compound under pressure: First-principles calculations. Brazilian Journal of Physics, 54(2), 46.

Meliani, K., Dehbaoui, M., Djennane, K., & Dehimi, N. E. H. (2024). Pressure effect investigation of structural, electronic, elastic and magnetic properties of X₂CrSb (X = Mn, Co and Cu) Heusler alloys. Physica B: Condensed Matter, 694, 416442.

Haireche, S., Douakh, S., Elbaa, M., Bouchenafa, M., & Meliani, K. (2025). Influence of phase transition on the mechanical and optical properties of SrSe and SrTe compounds via ab initio calculations. Physica B: Condensed Matter, 696, 416610.

Dehimi, N. E. H., Mourad, D., Meliani, K., Djennane, K., Benaisti, I., & Ozdogan, K. (2025). Unveiling the pressure-induced properties and ambient thermoelectric behaviour of Co₂YZ (Z = Si, Ge, Sn) Heusler alloys. Physica Scripta. (In press)

Meliani, K., Dehbaoui, M., Sarhani, M. E. S., Benalia, A., Djennane, K., & others. (2025). Unveiling the antiferromagnetic Co₂−ₓFeₓCrSn (x = 0, 0.5, 1) hexagonal quaternary Heusler alloys: Experimental and theoretical study. Journal of Alloys and Compounds, In press, 183537.

Khaoula, D., Mourad, D., Elhouda, D. N., & Kawther, M. (2025). HfZFe candidate 2 (Z = Si, Ge, Sn), promising new materials for electronic and thermoelectric applications. In Proceedings of the 2nd International Conference of Nanotechnology for Renewable Energy (ICNRE).