Wenjihao Hu | Advanced Materials | 13507

Prof. Wenjihao Hu | Advanced Materials 

Prof. Wenjihao Hu, Central South University, China

Professor Wenjihao Hu is a distinguished scholar and Subdean at the School of Resource Processing and Biological Engineering, Central South University, China. As a doctoral supervisor and key member of national and provincial research centers, he has led several major national and international projects focusing on mineral processing, smart mining, and environmental remediation. With over 40 SCI-indexed publications and 10 patents, his innovations in nanoconfined adsorption materials have significantly advanced heavy metal removal techniques. Actively collaborating with top global institutions, Prof. Hu plays a vital role in academic leadership, research innovation, and the cultivation of future scientific talents.

Author Profile

Google Scholar

🎓 Early Academic Pursuits

Professor Wenjihao Hu’s academic journey began with a strong foundation in resource processing and biological engineering. His passion for materials science and environmental sustainability shaped his pursuit of higher education in mineral engineering and nanotechnology. This early dedication led him to academic excellence and specialization in interface chemistry and advanced mineral materials. His academic training prepared him for a multidisciplinary approach, combining colloidal science, surface interactions, and engineering applications. These formative experiences laid the groundwork for a prolific academic and research career centered on solving critical environmental and mineral resource challenges.

🧪 Professional Endeavors

Currently serving as a Professor and Subdean at the School of Resource Processing and Biological Engineering, Central South University, Prof. Hu holds several key leadership roles. He is a distinguished professor at the National Engineering Research Center for Individualized Diagnosis and Treatment Technology, a doctoral supervisor, and Deputy Department Director of the Department of Inorganics. His affiliations also include being a core member of Hunan Province’s key laboratories focusing on strategic calcium mineral resources and mineral materials applications, and a vital contributor to the National Engineering Technology Research Center for Heavy Metal Pollution Prevention.

Prof. Hu has hosted and contributed to numerous national and international research initiatives. These include one National Key R&D Program, two National Natural Science Foundation projects, and international collaborations with institutions such as the University of Alberta, McGill University, Columbia University, University of Queensland, Imperial College London, and many more.

🔬 Contributions and Research Focus: Advanced Materials 

Prof. Hu’s research spans across mineral energy, smart mining, mineral environment, mineral medicine, and applied colloid and interface science. His investigations into nano-confinement mechanisms, surface modification, and intermolecular forces are reshaping the field of mineral processing.

A key contribution includes his study on the nanoconfined adsorption structure ZrP@HNTs. By confining zirconium phosphate within halloysite nanotubes, his team achieved an extraordinary threefold increase in lead ion (Pb²⁺) adsorption capacity, enhancing both performance and stability. This innovation demonstrates how nanoconfinement can enrich ion concentration and facilitate superior surface interaction—a finding confirmed by atomic force microscopy (AFM) and finite element simulations. Such research is instrumental in advancing sustainable and high-efficiency heavy metal remediation technologies.

🏅 Accolades and Recognition

Prof. Hu is widely recognized for his leadership and scientific contributions. He holds prestigious editorial positions including:

  • Editorial Board Member of Chinese and English Journal of Nonferrous Metals

  • Youth Editorial Committee Member of the Journal of Engineering Science

  • Academic Editor of Minerals

  • Member of editorial teams for Comprehensive Utilization of Mineral Resources and Nonferrous Metal Science and Engineering

His professional memberships reflect his leadership in the field, including:

  • Deputy Secretary General, Mining Process Interface Chemistry Committee

  • Vice Chairman, China International Mineral Processing Young Scholars Forum

  • Executive Director, Chinese Ceramics Society

He has published over 40 SCI-indexed journal articles, registered 10 patents, and actively contributes to cutting-edge national research projects, including the National Natural Science Foundation Youth Project and postgraduate innovation projects at Central South University.

🌍 Impact and Influence

Prof. Hu’s multidisciplinary research and leadership have had a transformative impact on both academic and industrial domains. His collaborations with global institutions have fostered academic exchange, capacity building, and technology transfer across continents. He plays a crucial role in mentoring young researchers and postgraduate students, equipping the next generation with practical skills and theoretical insights in nanomaterials, surface chemistry, and sustainable engineering.

Furthermore, his innovative approaches to mineral interface chemistry and clean resource utilization address real-world environmental challenges, particularly in heavy metal pollution—a concern of growing international significance.

🧭 Legacy and Future Contributions

Prof. Wenjihao Hu continues to push boundaries in smart and sustainable mining, advanced material design, and nano-interface interactions. His ongoing projects aim to deepen our understanding of ion selectivity, gas enrichment of materials, and scale-up of nano-composite membranes.

As a core backbone of national and provincial key laboratories, his legacy lies not only in his scientific achievements but also in his commitment to education, collaboration, and public service. With an ever-growing network of international partnerships and a vision for environmental sustainability, Prof. Hu is poised to make even greater contributions in the decades to come.

✍️ Publication Top Notes


📘 Deposition and adhesion of polydopamine on the surfaces of varying wettability

Author: C Zhang, L Gong, L Xiang, Y Du, W Hu, H Zeng, ZK Xu
Journal: ACS applied materials & interfaces

Year: 2017


📘 A magnetic pH-induced textile fabric with switchable wettability for intelligent oil/water separation

Author: T Yan, X Chen, T Zhang, J Yu, X Jiang, W Hu, F Jiao
Journal: Chemical Engineering

Year: 2018


📘Unraveling roles of lead ions in selective flotation of scheelite and fluorite from atomic force microscopy and first-principles calculations

Author: J He, W Sun, H Zeng, R Fan, W Hu, Z Gao
Journal: Minerals Engineering
Year: 2022

Xinli Liu | Powder metallurgy | Women Researcher Award

Mrs. Xinli Liu | Powder metallurgy | Women Researcher Award

Mrs. Xinli Liu, School of Materials Science and Engineering, Central South University, China

Mrs. Xinli Liu is a dedicated researcher at the School of Materials Science and Engineering, Central South University, China. Her work focuses on advanced materials development, emphasizing innovative approaches in material synthesis, characterization, and applications. With expertise in alloy engineering, nanotechnology, and sustainable materials, she contributes significantly to addressing challenges in energy efficiency, environmental sustainability, and industrial advancement. Mrs. Liu’s research is pivotal in bridging the gap between fundamental material science and practical engineering solutions.

Profile

Orcid

Early Academic Pursuits 🌱

Mrs. Xinli Liu’s academic journey began with a passion for materials science, which led her to pursue advanced studies in the field. Her dedication and intellectual curiosity culminated in her appointment as a Vice Professor at the prestigious School of Materials Science and Engineering, Central South University. Her early academic endeavors laid a strong foundation for her expertise in refractory metals, powder metallurgy, and sustainable materials development. Her educational achievements reflect her commitment to contributing to the advancement of materials science and engineering.

Professional Endeavors 💼

Mrs. Liu has demonstrated exceptional professional acumen through her leadership in various national and provincial projects. She has successfully hosted 5 national and 4 provincial research initiatives, showcasing her ability to address complex challenges in materials science. Collaborating with industry partners, she has translated research findings into practical solutions, fostering innovation and sustainability in the non-ferrous metals industry. Her dedication to advancing the recycling of refractory metals and her innovative approaches to material processing have solidified her reputation as a leader in her field.

Contributions and Research Focus 🔬

Mrs. Liu’s research contributions center on the plastic processing and recycling of rare metals and the development of cutting-edge technologies in powder metallurgy. Her work includes:

  • Coating Peeling and Recycling: Developing sustainable processes for surface coating removal and recycling, contributing to the efficient use of non-ferrous metal resources.
  • High-Entropy Silicide Coatings: Innovating protective coatings for tantalum and its alloys, enhancing their durability and performance.
  • Recycling Technologies: Collaborating with Hunan Dingli Technology Co., Ltd., Mrs. Liu developed advanced equipment for refractory metal recycling, achieving a recovery rate exceeding 90%.

Her prolific output includes 60 journal publications, 12 patents, and a book titled Advanced Techniques in Refractory Metals (ISBN: 978-7-5487-5115-1). These achievements underscore her dedication to advancing both the theoretical and practical aspects of materials science.

Accolades and Recognition 🏆

Mrs. Liu’s contributions have been widely recognized. Notably, she received the prestigious Second Prize of the Hunan Provincial Natural Science Award in 2018 for her groundbreaking research. Her citation index of 1003 (as per ResearchGate) and the application of her innovations in industrial settings reflect her impact on both academia and industry. Her achievements are a testament to her relentless pursuit of excellence.

Impact and Influence 🌍

Mrs. Liu’s work has a far-reaching impact on the scientific community and the environment. By pioneering sustainable recycling methods and developing technologies for high-value materials, she has promoted resource efficiency and environmental stewardship. Her collaboration with industry partners has also facilitated the industrialization of recycling processes, benefiting the broader economy and advancing the global agenda for sustainable development.

Legacy and Future Contributions 🌟

As a mentor, innovator, and researcher, Mrs. Liu continues to inspire the next generation of scientists in the field of materials science. Her ongoing projects aim to explore new frontiers in rare metal recycling and eco-friendly material processing, ensuring her legacy endures. She is committed to leveraging her expertise to address emerging challenges in resource sustainability and materials innovation.

Publication Top Notes

Influence of Solid Loading on the Gel-Casting of Porous NiTi Alloys

Contributors: Ze Wang; Zhiqiang He; Duan bohua; Xinli Liu; Dezhi Wang
Journal: Materials
Year: 2022

Microstructure and Mechanical Properties of Porous NiTi Alloy Prepared by Integration of Gel-Casting and Microwave Sintering

ContributorsZhiqiang He; Ze Wang; Dezhi Wang; Xinli Liu; Duan bohua
Journal: Materials
Year: 2022