Lei Xia | Chemistry and Materials Science | Research Excellence Award

Assoc Prof Dr. Lei Xia | Chemistry and Materials Science | Research Excellence Award

University of Science & Technology Liaoning | China

Dr. Lei Xia is an accomplished materials scientist and associate professor at the University of Science & Technology Liaoning, specializing in materials processing, tribology, corrosion protection, and computational simulation. He holds a PhD in Applied Chemistry from the Research Institute of Petroleum Processing, a Master’s degree in Materials Forming and Control Engineering from the University of Science and Technology Beijing, and a Bachelor’s degree from Yanshan University. Since joining USTL as a lecturer in 2019 and becoming associate professor in 2024, Dr. Xia has developed a strong research portfolio integrating experimental, theoretical, and simulation-based approaches to improve metal processing technologies. His major research areas include tribology and lubrication mechanisms in rolling processes, microstructure–property relationships in metallic materials, corrosion behavior and protective coatings, and molecular-level insights into lubricant oxidation and surface interactions using MD and QM simulations. Dr. Xia has completed and contributed to multiple national and enterprise-supported research projects, focusing on the improvement of steel, aluminum, and copper alloy processing performance. His scholarly contributions exceed 40 publications in high-impact SCI and EI journals, such as Lubricants, Metals, Materials Research Express, Tribology Letters, Rare Metal Materials and Engineering, and China Petroleum Processing & Petrochemical Technology. Many of his works investigate fatigue properties, lubricant chemistry, tribological behaviors, corrosion mechanisms, and the influence of process parameters on material performance. He has published two patents and numerous articles as corresponding or first author, demonstrating his leadership in research innovation. Dr. Xia’s contributions extend to several industrial collaborations with major enterprises such as Anshan Iron and Steel Group, Baowu Group, and Sinopec, where his work has directly supported advancements in rolling technology and surface quality control. His recognition includes selection for the prestigious Liaoning “Baiqianwan Talent Program” and the “Steel Capital Talent Plan.” Alongside his research, he serves on the youth editorial boards of multiple journals including Journal of Iron and Steel Research, Rolling Steel, Special Steel, Mechanical Engineering Newsletter, and Journal of Materials and Metallurgy. He is also an active member of professional societies such as the Chinese Mechanical Engineering Society, Chinese Materials Research Society, Chinese Chemical Society, and the China Nonferrous Metals Industry Association. Through interdisciplinary expertise, impactful publications, industrial collaborations, and major talent awards, Dr. Xia has made significant contributions to tribology, corrosion protection, and advanced materials processing, strengthening both academic research and industrial innovation.

Profile: Google Scholar

Featured Publications

Xia, L., Ma, Z., Kokogiannakis, G., Wang, Z., & Wang, S. (2018). A model-based design optimization strategy for ground source heat pump systems with integrated photovoltaic thermal collectors. Applied Energy, 214, 178–190. https://doi.org/10.1016/j.apenergy.2018.02.024

Ma, Z., Xia, L., Gong, X., Kokogiannakis, G., Wang, S., & Zhou, X. (2020). Recent advances and development in optimal design and control of ground source heat pump systems. Renewable and Sustainable Energy Reviews, 131, 110001. https://doi.org/10.1016/j.rser.2020.110001

Duong, H. C., Xia, L., Ma, Z., Cooper, P., Ela, W., & Nghiem, L. D. (2017). Assessing the performance of solar thermal driven membrane distillation for seawater desalination by computer simulation. Journal of Membrane Science, 542, 133–142. https://doi.org/10.1016/j.memsci.2017.08.019

Xia, L., Ma, Z., Kokogiannakis, G., Wang, S., & Gong, X. (2018). A model-based optimal control strategy for ground source heat pump systems with integrated solar photovoltaic thermal collectors. Applied Energy, 228, 1399–1412. https://doi.org/10.1016/j.apenergy.2018.06.017

Chen, J., Xia, L., Li, B., & Mmereki, D. (2015). Simulation and experimental analysis of optimal buried depth of the vertical U-tube ground heat exchanger for a ground-coupled heat pump system. Renewable Energy, 73, 46–54. https://doi.org/10.1016/j.renene.2014.06.055

Qi, D., Pu, L., Ma, Z., Xia, L., & Li, Y. (2019). Effects of ground heat exchangers with different connection configurations on the heating performance of GSHP systems. Geothermics, 80, 20–30. https://doi.org/10.1016/j.geothermics.2019.01.006

Xia, L., Ma, Z., McLauchlan, C., & Wang, S. (2017). Experimental investigation and control optimization of a ground source heat pump system. Applied Thermal Engineering, 127, 70–80. https://doi.org/10.1016/j.applthermaleng.2017.07.111

Gong, X., Xia, L., Ma, Z., Chen, G., & Wei, L. (2018). Investigation on the optimal cooling tower input capacity of a cooling tower assisted ground source heat pump system. Energy and Buildings, 174, 239–253. https://doi.org/10.1016/j.enbuild.2018.06.021

Xi Yuan | Nanotechnology | Research Excellence Award

Prof. Xi Yuan | Nanotechnology | Research Excellence Award 

Jilin Normal University | China

Prof. Xi Yuan is a distinguished researcher and academician currently serving as a Professor at Jilin Normal University, China. He earned his Ph.D. from the University of Chinese Academy of Sciences, building upon a solid undergraduate foundation at Jilin University. Over the course of his academic career, Prof. Yuan has established himself as a leading expert in the field of luminescent nanomaterials, a rapidly advancing area at the intersection of materials science, nanotechnology, and photonics. His work has significantly contributed to the understanding and development of nano-luminescent materials, which have applications across energy, optoelectronics, sensing, and bioimaging technologies. Prof. Yuan has an impressive track record of research and scholarly output. He has published 39 high-impact articles in prestigious SCI-indexed journals, demonstrating his consistent contributions to the advancement of knowledge in his field. His research excellence is further evidenced by his role as the lead principal investigator on a grant awarded by the China National Natural Science Foundation (NSFC), highlighting his ability to secure competitive funding for cutting-edge projects. In addition to his academic publications, Prof. Yuan has been involved in consultancy and industry projects related to luminescent nanomaterials, bridging the gap between theoretical research and practical applications. Throughout his career, Prof. Yuan has actively participated in collaborations with other researchers and institutions, fostering interdisciplinary partnerships that enhance the scope and impact of his work. He maintains a strong professional presence through his editorial appointments and memberships in relevant scientific societies, reflecting his commitment to the broader research community. Prof. Yuan’s contributions have not only advanced fundamental research but have also provided valuable technological insights for industrial applications, making him a role model for emerging scientists in the field. He is recognized for his meticulous approach to research, innovative thinking, and dedication to mentoring the next generation of scientists. Prof. Yuan’s academic and professional achievements, combined with his extensive experience in luminescent nanomaterials, make him an outstanding candidate for the Research Excellence Award. Through his sustained contributions, he has significantly impacted both the scientific community and society by advancing knowledge, fostering innovation, and promoting the application of nanomaterials to real-world challenges. His work exemplifies the highest standards of scientific rigor, creativity, and societal relevance, positioning him as a leading figure in contemporary materials research.

Profile: Orcid

Featured Publications

Ji, S., Zhao, L., Chen, C., Zhao, J., Wang, J., Zheng, J., & Yuan, X. (2025, November). A/B-site synergistic engineering in nanoscale quasi-two-dimensional perovskites: Bimetallic Cs⁺/Cd²⁺ co-doping for enhanced luminescence and phase stability of BA₂MAn-1PbnBr3n+1 films. Journal of Alloys and Compounds. https://doi.org/10.1016/j.jallcom.2025.184887

Qian, Z., Wu, X., Xia, L., Wang, J., Zhao, J., & Yuan, X., Bao, X. (2025, November). Achieving long-lived multicolor room-temperature phosphorescence in silicon nanodots through Zn²⁺ doping for anti-counterfeiting and multiple-level information encryption. Journal of Luminescence. https://doi.org/10.1016/j.jlumin.2025.121678

Bao, X., Zhu, X., Tian, Z., Wang, H., Li, H., & Yuan, X. (2025, July). Dual-mode thermochromic afterglow in phosphorus-doped carbon dot composites for visible light-activated information encryption. Journal of Colloid and Interface Science. https://doi.org/10.1016/j.jcis.2025.137331

Zhao, K., Ji, S., Zhao, L., Qian, Z., Wu, X., Xia, L., Gao, Y., Zhao, J., & Yuan, X. (2025, July). Enhanced near-infrared emission and stability of Yb-doped CsPbCl₃ nanocrystals via amine ligand regulation for phosphor-converted light-emitting diodes. Journal of Alloys and Compounds. https://doi.org/10.1016/j.jallcom.2025.181832

Li, J., Xia, L., Liu, Y., Gu, Z., Liang, H., Wu, X., Qian, Z., Ji, S., Zhao, J., & Yuan, X. (2025, June). Optimizing luminescence performance of alloyed CsPb₁−xCdxBr₃ perovskite nanocrystals for blue light-emitting diodes. Materials Research Bulletin. https://doi.org/10.1016/j.materresbull.2025.113355

Zhu, X., Tian, Z., Wang, H., Wang, X., Zhang, Y., Wang, Y., Li, H., Bao, X., & Yuan, X. (2025, May 23). Visible light-activated dual-mode afterglow emission in chlorine-doped carbon dot-based composite for advanced information encryption. ACS Applied Nano Materials. https://doi.org/10.1021/acsanm.5c00279

Nighil Nath MP | Chemistry and Materials Science | Editorial Board Member

Dr. Nighil Nath MP | Chemistry and Materials Science | Editorial Board Member

University of Calicut | India

Dr. Nighil Nath M. P. is a dedicated physicist and educator whose research focuses on condensed matter theory, materials science, glass-forming systems, plastic crystals, low-temperature physics, and broadband dielectric spectroscopy. With a strong foundation in both theoretical and experimental physics, he has significantly contributed to understanding the thermal and dielectric behaviors of orientationally disordered systems. His investigations using advanced techniques such as Differential Scanning Calorimetry (DSC) and temperature-controlled X-Ray Diffraction (X-RD) have shed light on the structural and phase transition dynamics of complex molecular materials. Dr. Nath earned his Ph.D. in Physics from the University of Calicut, Kerala, in 2022, where his thesis, “Thermal and Spectroscopic Investigations on Some Plastic Crystals,” provided deep insights into the thermal and dielectric relaxation mechanisms in molecular solids. His academic journey began with a B.Sc. in Physics from Zamorin’s Guruvayurappan College (2008) and an M.Sc. in Physics from CMS College, Kottayam (2012). Over the years, he has demonstrated a strong passion for advancing material characterization techniques and understanding the microscopic processes governing physical properties of crystalline and amorphous materials. Dr. Nath’s publication record reflects his rigorous approach to scientific inquiry. His works have appeared in prestigious journals such as Journal of Physics and Chemistry of Solids, Indian Journal of Physics, Journal of Molecular Liquids, and Materials Today Proceedings. Among his notable contributions are studies on tetrahedrally coordinated organic plastic crystals, phase transition dynamics in cyclohexene oxide, and dielectric relaxation in ionic liquids. These papers not only enrich the literature on material science but also open new pathways for the application of plastic crystals and related compounds in energy storage and optoelectronic devices. Beyond research, Dr. Nath is an accomplished academic mentor, having guided over 50 M.Sc. students in various experimental and theoretical projects between 2014 and 2020. Currently serving as a High School Assistant (Physical Science) at the Government Higher Secondary School, Kakkodi, Kozhikode, Kerala, since December 2022, he continues to inspire young minds with his deep scientific insight and enthusiasm for discovery. His career reflects a harmonious blend of scientific innovation, academic excellence, and educational commitment, establishing him as a promising researcher and educator in the field of condensed matter and material physics.

Profiles: Scopus | Orcid | Google Scholar

Featured Publications

Kottummal, T. K., Pilathottathil, S., Thayyil, M. S., Perumal, P. M., Sreekala, K. K. N., & Nighil Nath, M. P. (2018). Dielectric relaxation and electrochemical studies on trihexyl tetradecyl phosphonium chloride ionic liquid. Journal of Molecular Liquids, 252, 488–494.

Nighil Nath, M. P., & Sulaiman, M. K., & Thayyil, M. S. (2019). Thermal and dielectric spectroscopic investigation on orientationally disordered crystal—Cyclobutanol. Materials Today: Proceedings, 18, 1620–1626.

Manal Poovingal, N. N., Thayyil, M. S., Afzal, A., & Govindaraj, G. (2022). Thermal and dielectric studies on orientationally disordered crystal: Cyclobutanol. Indian Journal of Physics, 96(7), 1991–1999.

Afzal, A., Thayyil, M. S., Mohamed, M. N. S., Nighil Nath, M. P., & others. (2025). Broadband dielectric spectroscopic studies of acemetacin, colchicine and bezafibrate during quench cooling, and in supercooled liquid phase by dielectric modulus formalism. Indian Journal of Physics, 1–11.

Nath, M. P. N., Thayyil, M. S., & Afzal, A. (2025). Phase transition dynamics and dielectric relaxations in orientationally disordered crystal: A study of cyclohexene oxide. Journal of Physics and Chemistry of Solids, 207, 112839.

Nath, M. P. N., Thayyil, M. S., & Afzal, A. (2025). Thermal and dielectric spectroscopic investigations on tetrahedrally coordinated organic plastic crystals: Aminomethylpropanediol and pentaglycerol. Journal of Physics and Chemistry of Solids, 113019.

Sumit Swain | Nanotechnology | Excellence in Research Award

Assist. Prof. Dr. Sumit Swain | Nanotechnology | Excellence in Research Award

Dayanandasagar College of Engineering | India

Dr. Sumit Swain is an emerging researcher in the field of Fractional-Order Circuits and Systems, with a specialized focus on modeling, design, experimentation, and implementation of fractional-order elements. His research spans across interdisciplinary areas including analog signal processing, bioimpedance analysis, wireless power transfer systems, biomedical instrumentation, and sensor design. He has been actively engaged in both theoretical and experimental studies on fractional inductors and capacitors, aiming to enhance the performance and efficiency of modern analog and mixed-signal systems. Dr. Swain earned his Doctor of Philosophy (Ph.D.) in 2025 from the School of Electronic Sciences, Odisha University of Technology and Research (OUTR), Bhubaneswar, India, under the guidance of Dr. Madhab Chandra Tripathy and Dr. Sribatsa Behera. His doctoral thesis, “Performance Improvement of Circuits and Systems Through Design and Analysis of Fractional-Order Elements,” presents innovative approaches to circuit optimization using fractional-order modeling principles. He also holds a Master of Technology (M.Tech.) in Electronics and Instrumentation Engineering from the same institution (2020), where his work on fractional-order filters and FOPID controllers laid the foundation for his subsequent research contributions. His Bachelor of Technology (B.Tech.) in Applied Electronics and Instrumentation was completed at C.V. Raman College of Engineering, Bhubaneswar, in 2018. With an impressive publication record of over 25 research papers, including 11 papers in SCIE and Scopus-indexed journals, 16 conference papers, and several manuscripts under review in reputed journals such as IEEE Transactions on Power Electronics and Circuits, Systems and Signal Processing, Dr. Swain has established himself as a dynamic researcher in electronic sciences. His works have collectively attracted 199 citations and an h-index of 10, reflecting his growing academic impact. His publications appear in high-quality international journals such as Computers in Biology and Medicine (Elsevier), Journal of Food Engineering (Elsevier), Nanoscale Advances (RSC), IETE Journal of Research (Taylor & Francis), Sādhanā (Springer), and AEU–International Journal of Electronics and Communications (Elsevier). His contributions include the realization of fractional-order inductors and capacitors, switched-capacitor-based filter designs, and fractional-order amplifiers, as well as innovative studies on bioimpedance modeling for analyzing the ripening and moisture content of fruits and vegetables. Dr. Swain’s excellence has been recognized with multiple honors, including the Young Scientist Award (2022) and the Best Researcher Award (2021) from the International Research Awards on Science, Health, and Engineering (ScienceFather), alongside Best Paper Awards at several IEEE international conferences. He has also delivered. Dr. Sumit Swain’s research integrates fractional calculus, sensor technology, and circuit innovation to push the boundaries of analog and biomedical electronics. His consistent publication output, recognized academic contributions, and commitment to advancing sustainable and intelligent circuit systems mark him as one of the promising young researchers in the field of electronic sciences.

Profiles: Scopus | Orcid

Featured Publications

Swain, S., Tripathy, M. C., Bhuyan, K. C., & Behera, S. (2025). Wide-band fractional-order filter design using coaxial TEM fractional-inductor. Next Research, 2(2), 100395.

Swain, S., Swain, S., Panda, B., & Tripathy, M. C. (2025). Modeling and optimal analysis of lung cancer cell growth and apoptosis with fractional-order dynamics. Computers in Biology and Medicine, 188, 109837.

Nayak, B., Swain, S., & Tripathy, M. C. (2025). Fractional order bioimpedance modeling for sensing fruit properties. Journal of Food Engineering, 397, 112594. https://doi.org/10.1016/j.jfoodeng.2025.112594

Swain, S., Tripathy, M. C., Behera, S., & Dastidar, A. (2025). Experimental analysis of ripening stages and moisture content of lemon using fractional-order bio-impedance modelling. IETE Journal of Research.

Sahoo, A., Acharya, A., Jena, P., Moonis, M., Biswal, J. P., Swain, S., & Tripathy, M. C. (2025). Zirconium ferrite nanoparticles as smart materials for energy and environmental applications: Fractional-order supercapacitors, reservoirs of F− ions, and efficient electrocatalysts for water splitting. Nanoscale Advances, 7(1), 1–12.

Swain, S., Tripathy, M. C., Sahoo, A., Acharya, A. N., & Behera, S. (2024). Implementation of a fractional-inductor (α < 0.5) and its performance study in a high-frequency LαR integrator circuit. AEU–International Journal of Electronics and Communications, 167, 155114.

Swain, S., Dash, S., & Tripathy, M. C. (2024). FOPID-based feed-forward temperature control of a 100°C thermal reservoir. In Proceedings of the 1st International Conference on Software, Systems and Information Technology (SSITCON 2024) (pp. 1–5).

Swain, S., Swami, S. D., Tripathy, M. C., & Behera, S. (2024). Performance exploration and tunability of a high-frequency fractional-order clock oscillator. In Proceedings of the IEEE International Conference on Smart Power Control and Renewable Energy (ICSPCRE 2024) (pp. 1–6).

Abu Farzan Mitul | Engineering | Best Researcher Award

Dr. Abu Farzan Mitul | Engineering | Best Researcher Award

Leidos | United States

Dr. Abu Farzan Mitul is an accomplished researcher and educator specializing in opto-electronic device fabrication, fiber optic sensing technologies, and nanostructured thin-film materials. His research bridges the intersection of photonics, materials science, and advanced sensing systems — contributing to innovations that enhance environmental monitoring, industrial automation, and biomedical diagnostics. Dr. Mitul earned his Ph.D. in Electrical and Computer Engineering from the University of Texas at El Paso (UTEP), USA, where he designed and developed advanced fiber Bragg grating sensors and thin-film photonic devices for multi-parameter sensing applications. His earlier academic training includes a B.Sc. and M.Sc. in Applied Physics, Electronics, and Communication Engineering from the University of Dhaka, Bangladesh. Throughout his career, Dr. Mitul has collaborated with leading U.S. research institutions and agencies, including the Department of Energy (DOE), Department of Defense (DoD), and NASA, focusing on next-generation optoelectronic and energy-efficient sensing systems. His extensive publication record spans high-impact journals and international conferences in photonics, sensor technology, and materials characterization. In addition to his research, Dr. Mitul has served as a faculty member and laboratory instructor, mentoring undergraduate and graduate students in electronics, photonics, and experimental physics. He is passionate about advancing interdisciplinary research in fiber optic sensing, MEMS/NEMS devices, photonic integrated systems, and nanotechnology-driven device engineering. Dr. Mitul continues to explore innovative pathways toward miniaturized, high-sensitivity photonic systems with applications across environmental, aerospace, and biomedical fields — aligning cutting-edge materials research with sustainable technological development.

Profiles: Orcid | Google Scholar | Linkedin

Featured Publications

Adhikari, N., Dubey, A., Khatiwada, D., Mitul, A. F., Wang, Q., Venkatesan, S., & Qiao, Q. (2015). Interfacial study to suppress charge carrier recombination for high efficiency perovskite solar cells. ACS Applied Materials & Interfaces, 7(48), 26445–26454. https://doi.org/10.1021/acsami.5b08343

Rana, G. M. S. M., Khan, A. A. M., Hoque, M. N., & Mitul, A. F. (2013, December). Design and implementation of a GSM based remote home security and appliance control system. In 2013 2nd International Conference on Advances in Electrical Engineering (ICAEE) (pp. 291–295). IEEE. https://doi.org/10.1109/ICAEE.2013.6750340

Khatiwada, D., Venkatesan, S., Adhikari, N., Dubey, A., Mitul, A. F., Mohammad, L., … & Qiao, Q. (2015). Efficient perovskite solar cells by temperature control in single and mixed halide precursor solutions and films. The Journal of Physical Chemistry C, 119(46), 25747–25753. https://doi.org/10.1021/acs.jpcc.5b08667

Mitul, A. F., Mohammad, L., Venkatesan, S., Adhikari, N., Sigdel, S., Wang, Q., … & Qiao, Q. (2015). Low temperature efficient interconnecting layer for tandem polymer solar cells. Nano Energy, 11, 56–63. https://doi.org/10.1016/j.nanoen.2014.10.030

Venkatesan, S., Ngo, E. C., Chen, Q., Dubey, A., Mohammad, L., Adhikari, N., … & Qiao, Q. (2014). Benzothiadiazole-based polymer for single and double junction solar cells with high open circuit voltage. Nanoscale, 6(12), 7093–7100. https://doi.org/10.1039/C4NR00606H

Islam, M. M., Rafi, F. H. M., Mitul, A. F., Ahmad, M., Rashid, M. A., & Malek, M. F. B. A. (2012, May). Development of a noninvasive continuous blood pressure measurement and monitoring system. In 2012 International Conference on Informatics, Electronics & Vision (ICIEV) (pp. 695–699). IEEE. https://doi.org/10.1109/ICIEV.2012.6317425

 

Chinedu Okere | Engineering | Best Researcher Award

Dr. Chinedu Okere | Engineering | Best Researcher Award 

University of Houston | United States

Dr. Chinedu (Junior) Okere is a dynamic early-career researcher whose interests span subsurface hydrogen generation, large-scale hydrogen storage in geological formations, experimental and numerical modelling of CO₂ capture, utilisation and storage (CCUS), methane leakage from orphaned wells, and drilling/fracturing fluid design and formation-damage mitigation in petroleum reservoirs. His professional trajectory has taken him from graduate research at the China University of Petroleum (Beijing) (M.Eng., 2022) to doctoral studies at the Texas Tech University (Ph.D., 2025) and onward to a post-doctoral appointment in the Department of Petroleum Engineering at the University of Houston (from mid-2025). In these roles he has supervised PhD students, managed a U.S. Department of Energy-funded CarbonSAFE project on CO₂ storage, and led the development of grant proposals, patents and peer-reviewed publications. According to his Google Scholar profile he has to date achieved 659 citations and an h-index of 15, with an i10-index of 19. His publication record includes a broad spectrum of articles (20+, depending on counting method) covering topics from “clean hydrogen generation from petroleum reservoirs” to fuzzy-ball fluid‐induced damage in tight reservoirs, reservoir suitability for hydrogen storage, and methane leakage from abandoned wells. Most recently, his first‐author papers (2024-2025) address techno-economic feasibility of in-situ hydrogen production from petroleum reservoirs, SARA-based experimental and numerical investigations of in-situ hydrogen generation, and comparative numerical studies for optimisation of hydrogen production and CCUS strategies. In recognition of his impact he has received numerous honours including the 2024 International Inventions Awards – Hydrogen Energy Best Researcher Award, and the Society of Petroleum Engineers Permian Basin Scholarship. With strong interdisciplinary credentials spanning petroleum engineering, energy systems, reservoir simulation, and hydrogen/CCUS technologies, Dr. Okere stands out as an emerging scholar bridging the conventional oil-&-gas domain with the clean/hydrogen energy transition. His h-index of 15 reflects a solid early‐career impact: it means he has at least 15 publications each cited at least 15 times. (The h-index concept was originally proposed by J. E. Hirsch as a simple measure of productivity and citation impact. Going forward, his strong publication momentum, growing citation base and leadership in grant/industry-adjacent projects suggest that he is well-positioned to further increase both his research output and influence in the hydrogen/CCUS engineering community.

Profiles: Scopus | Orcid | Google Scholar 

Featured Publications

Okere, C. J., & Sheng, J. J. (2023). Review on clean hydrogen generation from petroleum reservoirs: Fundamentals, mechanisms, and field applications. International Journal of Hydrogen Energy, 101.

Edouard, M. N., Okere, C. J., Ejike, C., Dong, P., & Suliman, M. A. M. (2023). Comparative numerical study on the co-optimization of CO₂ storage and utilization in EOR, EGR, and EWR: Implications for CCUS project development. Applied Energy, 347, 121448.

Eyitayo, S. I., Okere, C. J., Hussain, A., Gamadi, T., & Watson, M. C. (2024). Synergistic sustainability: Future potential of integrating produced water and CO₂ for enhanced carbon capture, utilization, and storage (CCUS). Journal of Environmental Management, 351, 119713.

He, J., Okere, C. J., Su, G., Hu, P., Zhang, L., Xiong, W., & Li, Z. (2021). Formation damage mitigation mechanism for coalbed methane wells via refracturing with fuzzy-ball fluid as temporary blocking agents. Journal of Natural Gas Science and Engineering, 90, 103956.

Okere, C. J., Su, G., Zheng, L., Cai, Y., Li, Z., & Liu, H. (2020). Experimental, algorithmic, and theoretical analyses for selecting an optimal laboratory method to evaluate working fluid damage in coal bed methane reservoirs. Fuel, 282, 118513.

Tao, X., Okere, C. J., Su, G., & Zheng, L. (2022). Experimental and theoretical evaluation of interlayer interference in multi-layer commingled gas production of tight gas reservoirs. Journal of Petroleum Science and Engineering, 208, 109731.

Okere, C. J., & Sheng, J. J. (2024). A new modelling approach for in-situ hydrogen production from heavy oil reservoirs: Sensitivity analysis and process mechanisms. Energy, 302, 131817.

Opara, S. U., & Okere, C. J. (2024). A review of methane leakage from abandoned oil and gas wells: A case study in Lubbock, Texas, within the Permian Basin. Energy Geoscience, 5(3), 100288.

Qingshan Pan | Materials Science | Best Researcher Award

Dr. Qingshan Pan | Materials Science | Best Researcher Award 

Dr. Qingshan Pan | Jiangxi Science & Technology Normal University | China

Dr. Qingshan Pan, Professor at Jiangxi Science & Technology Normal University, is a distinguished researcher specializing in DNA nanomaterials, MOF nanozyme materials, and self-assembled nano/nanogel systems derived from traditional Chinese medicine components. His work focuses on developing antibacterial and anti-inflammatory nanomedicines, advanced wound dressings, and targeted tumor diagnostics and therapies. A recipient of funding from the National Natural Science Foundation of China and multiple provincial grants, Dr. Pan has authored over 20 SCI-indexed publications in leading journals such as Chemical Engineering Journal and ACS Applied Materials & Interfaces, contributing significantly to nanomedicine and precision therapeutics research.

Author Profile

Scopus

Education

Dr. Qingshan Pan’s academic journey began with a strong foundation in chemical engineering, earning his bachelor’s degree from the Department of Chemical Engineering and Technology, Central South University. His early studies nurtured a keen interest in material science, nanotechnology, and their biomedical applications. Driven by a passion for innovation, he pursued doctoral studies at the State Key Laboratory of Chemical Biology and Measurement, Hunan University, specializing in Analytical Chemistry, and graduated with his Ph.D. His doctoral training provided him with advanced expertise in nanoscale materials design, synthesis, and functionalization, particularly for healthcare applications. These formative years equipped him with a multidisciplinary skill set that integrates chemistry, biology, and materials science—an essential foundation for his later breakthroughs in nanomedicine.

Experience

Currently serving as a Professor at Jiangxi Science & Technology Normal University, Dr. Pan is actively involved in teaching, mentoring, and leading high-impact research projects. He has successfully secured funding from prestigious organizations, including the National Natural Science Foundation of China, the Jiangxi Province Outstanding Young Scholars Fund, the Jiangxi Province Natural Science Foundation, and the Education Department. Through these roles, he has developed innovative research programs that bridge fundamental nanoscience with real-world biomedical solutions. Beyond academia, Dr. Pan contributes to the growth of the scientific community by engaging in collaborations with other researchers, fostering interdisciplinary partnerships, and promoting the application of nanotechnology in medicine and healthcare.

Research Focus

Dr. Pan’s research portfolio is broad yet deeply specialized, encompassing DNA nanomaterials, metal–organic framework (MOF) nanozyme materials, and self-assembled nano/nanogel systems derived from traditional Chinese medicine components. These systems have been engineered for antibacterial and anti-inflammatory nanomedicines, advanced antibacterial dressings, and precision tumor diagnosis and therapy.

His innovative approach to combining traditional Chinese medicine with cutting-edge nanotechnology has led to the development of hybrid nanomaterials that exhibit unique bioactive properties, enhanced stability, and targeted delivery capabilities. By integrating DNA nanotechnology with MOF-based nanozymes, his work addresses key challenges in biomedical applications, such as targeted drug release, controlled therapeutic activity, and dual-function systems capable of both diagnosis and treatment. These contributions not only advance the frontiers of nanomedicine but also provide new strategies for combating bacterial infections, reducing inflammation, and improving cancer therapy outcomes.

Award and Recognition

Dr. Pan’s scientific achievements are reflected in his impressive publication record, with over 20 SCI-indexed papers in internationally renowned journals, including Chemical Engineering Journal and ACS Applied Materials & Interfaces. His work is recognized for its high citation value, innovative experimental design, and significant potential for translational application in clinical medicine. Receiving funding from multiple prestigious agencies underscores his reputation as a leading figure in nanomedicine research. His role as a principal investigator in national and provincial projects highlights his ability to conceive, lead, and execute complex research initiatives that meet rigorous scientific standards.

Impact and Influence

The impact of Dr. Pan’s research extends far beyond academic citations. His nanomedicine platforms have the potential to revolutionize how bacterial infections, inflammation, and tumors are diagnosed and treated. The antibacterial dressings developed in his lab could play a crucial role in preventing hospital-acquired infections and promoting faster wound healing. His tumor-targeted nanotherapies are paving the way for minimally invasive and highly specific cancer treatments, reducing side effects while improving efficacy. Furthermore, by integrating bioactive compounds from traditional Chinese medicine into modern nanocarriers, Dr. Pan is contributing to a new paradigm in personalized and culturally rooted healthcare innovation.

Publications 

Transition Metal Sulfide-Based Nanozymes: From Design Strategies to Applications in Chronic Wound Healing

Author: Yuying Zhang, Renxi Li, XianXi Li, Pengwu Zheng, Wufu Zhu, Cunpeng Nie, Qingshan Pan
Journal: ACS Applied Nano Materials
Year: 2025

Review of Metal-Polyphenol Self-Assembled Nanoparticles: Synthesis, Properties, and Biological Applications in Inflammatory Diseases.

Author: Li Wan, Shizhe Li, Jiawei Du, Anqi Li, Yujie Zhan, Wufu Zhu, Pengwu Zheng, Dan Qiao, Cunpeng Nie, Qingshan Pan
Journal: ACS Biomaterials Science & Engineering
Year: 2025

Photothermally Enhanced Cascaded Nanozyme-Functionalized Black Phosphorus Nanosheets for Targeted Treatment of Infected Diabetic Wounds.

Author: Chunping Wen, Yan Zhang, Luogen Lai, Xuan Zhang, Yijun Liu, Qiuyan Guo, Rujue Peng, Yating Gao, Xufei Zhang, Yan He, Shan Xu, Dan Qiao, Pengwu Zheng, Qingshan Pan, Wufu Zhu
Journal: Advanced Healthcare Materials
Year: 2025

Conclusion

Dr. Qingshan Pan’s remarkable journey from his foundational studies in chemical engineering to his pioneering research in analytical chemistry and nanomedicine reflects a career marked by curiosity, dedication, and innovation. His expertise in designing DNA nanomaterials, MOF nanozyme platforms, and self-assembled nanogels bridges the gap between advanced material science and practical biomedical applications, addressing critical challenges in antibacterial, anti-inflammatory, and tumor-targeted therapies. Through his leadership in prestigious national and provincial research projects, his extensive scholarly publications, and his commitment to translating research into impactful solutions, Dr. Pan has firmly established himself as a trailblazer in interdisciplinary science. His work not only elevates the academic standing of Jiangxi Science & Technology Normal University but also contributes meaningfully to global advancements in nanotechnology and precision medicine. As his career progresses, Dr. Pan is poised to expand his influence, inspiring future scientists while continuing to innovate at the intersection of chemistry, biology, and medicine.