Tingting Han | Chemistry and Materials Science | Research Excellence Award

Dr. Tingting Han | Chemistry and Materials Science | Research Excellence Award

Jiangsu Academy of Agricultural Sciences | China

Dr. Tingting Han is an Assistant Researcher at the Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences (JAAS), Nanjing, China, where she conducts cutting-edge research at the interface of analytical chemistry, nanomaterials, and food safety. She obtained her Ph.D. in Chemistry in 2022 from Nanjing University, under the supervision of Prof. HongYuan Chen and Prof. Jun-Jie Zhu, following earlier Master’s and Bachelor’s degrees in chemistry-related disciplines from Southeast University and Huaiyin Normal University, respectively. Her academic training has provided a strong foundation in electroanalytical chemistry and functional material design. Dr. Han’s research is primarily focused on the development of advanced functional nanomaterials and their electrochemiluminescence (ECL)-based applications in food safety control, biosensing, and human health monitoring. Her work emphasizes innovative strategies such as aggregation- and crystallization-induced enhanced electrochemiluminescence, nanoaggregate engineering, Janus emitters, and nanozyme-based signal amplification, enabling highly sensitive and selective detection of food contaminants and disease biomarkers. These approaches contribute significantly to improving analytical performance in complex matrices, particularly for trace-level detection relevant to public health and food security. Since joining JAAS in 2023, Dr. Han has taken on a leading role in multiple competitive research initiatives. She is currently leading or co-leading four funded research projects, including sub-projects under the National Key R&D Program of China and key laboratory research programs. These projects highlight her growing independence as a researcher and her ability to translate fundamental nanomaterial science into practical sensing platforms for real-world applications. Dr. Han has established a strong publication record despite her early career stage. She has authored more than 10 first-author SCI-indexed papers in internationally recognized journals such as Advanced Functional Materials, Small, Trends in Analytical Chemistry, Biosensors, and Electrochimica Acta. Notably, five of her publications appear in journals with impact factors exceeding 10, reflecting the high visibility and scientific impact of her work. Her contributions have advanced understanding of ECL mechanisms, signal amplification strategies, and nanomaterial-assisted biosensing formats.

Citation Metrics (Scopus)

  600
  500
  400
  300
  200
  100
    50
    30
    10
      0

Citations
591

Documents
20

h-index
12

Citations

h-index

i10-index

View Scopus Profile

Featured Publications

Xi Yuan | Nanotechnology | Research Excellence Award

Prof. Xi Yuan | Nanotechnology | Research Excellence Award 

Jilin Normal University | China

Prof. Xi Yuan is a distinguished researcher and academician currently serving as a Professor at Jilin Normal University, China. He earned his Ph.D. from the University of Chinese Academy of Sciences, building upon a solid undergraduate foundation at Jilin University. Over the course of his academic career, Prof. Yuan has established himself as a leading expert in the field of luminescent nanomaterials, a rapidly advancing area at the intersection of materials science, nanotechnology, and photonics. His work has significantly contributed to the understanding and development of nano-luminescent materials, which have applications across energy, optoelectronics, sensing, and bioimaging technologies. Prof. Yuan has an impressive track record of research and scholarly output. He has published 39 high-impact articles in prestigious SCI-indexed journals, demonstrating his consistent contributions to the advancement of knowledge in his field. His research excellence is further evidenced by his role as the lead principal investigator on a grant awarded by the China National Natural Science Foundation (NSFC), highlighting his ability to secure competitive funding for cutting-edge projects. In addition to his academic publications, Prof. Yuan has been involved in consultancy and industry projects related to luminescent nanomaterials, bridging the gap between theoretical research and practical applications. Throughout his career, Prof. Yuan has actively participated in collaborations with other researchers and institutions, fostering interdisciplinary partnerships that enhance the scope and impact of his work. He maintains a strong professional presence through his editorial appointments and memberships in relevant scientific societies, reflecting his commitment to the broader research community. Prof. Yuan’s contributions have not only advanced fundamental research but have also provided valuable technological insights for industrial applications, making him a role model for emerging scientists in the field. He is recognized for his meticulous approach to research, innovative thinking, and dedication to mentoring the next generation of scientists. Prof. Yuan’s academic and professional achievements, combined with his extensive experience in luminescent nanomaterials, make him an outstanding candidate for the Research Excellence Award. Through his sustained contributions, he has significantly impacted both the scientific community and society by advancing knowledge, fostering innovation, and promoting the application of nanomaterials to real-world challenges. His work exemplifies the highest standards of scientific rigor, creativity, and societal relevance, positioning him as a leading figure in contemporary materials research.

Profile: Orcid

Featured Publications

Ji, S., Zhao, L., Chen, C., Zhao, J., Wang, J., Zheng, J., & Yuan, X. (2025, November). A/B-site synergistic engineering in nanoscale quasi-two-dimensional perovskites: Bimetallic Cs⁺/Cd²⁺ co-doping for enhanced luminescence and phase stability of BA₂MAn-1PbnBr3n+1 films. Journal of Alloys and Compounds. https://doi.org/10.1016/j.jallcom.2025.184887

Qian, Z., Wu, X., Xia, L., Wang, J., Zhao, J., & Yuan, X., Bao, X. (2025, November). Achieving long-lived multicolor room-temperature phosphorescence in silicon nanodots through Zn²⁺ doping for anti-counterfeiting and multiple-level information encryption. Journal of Luminescence. https://doi.org/10.1016/j.jlumin.2025.121678

Bao, X., Zhu, X., Tian, Z., Wang, H., Li, H., & Yuan, X. (2025, July). Dual-mode thermochromic afterglow in phosphorus-doped carbon dot composites for visible light-activated information encryption. Journal of Colloid and Interface Science. https://doi.org/10.1016/j.jcis.2025.137331

Zhao, K., Ji, S., Zhao, L., Qian, Z., Wu, X., Xia, L., Gao, Y., Zhao, J., & Yuan, X. (2025, July). Enhanced near-infrared emission and stability of Yb-doped CsPbCl₃ nanocrystals via amine ligand regulation for phosphor-converted light-emitting diodes. Journal of Alloys and Compounds. https://doi.org/10.1016/j.jallcom.2025.181832

Li, J., Xia, L., Liu, Y., Gu, Z., Liang, H., Wu, X., Qian, Z., Ji, S., Zhao, J., & Yuan, X. (2025, June). Optimizing luminescence performance of alloyed CsPb₁−xCdxBr₃ perovskite nanocrystals for blue light-emitting diodes. Materials Research Bulletin. https://doi.org/10.1016/j.materresbull.2025.113355

Zhu, X., Tian, Z., Wang, H., Wang, X., Zhang, Y., Wang, Y., Li, H., Bao, X., & Yuan, X. (2025, May 23). Visible light-activated dual-mode afterglow emission in chlorine-doped carbon dot-based composite for advanced information encryption. ACS Applied Nano Materials. https://doi.org/10.1021/acsanm.5c00279

Nighil Nath MP | Chemistry and Materials Science | Editorial Board Member

Dr. Nighil Nath MP | Chemistry and Materials Science | Editorial Board Member

University of Calicut | India

Dr. Nighil Nath M. P. is a dedicated physicist and educator whose research focuses on condensed matter theory, materials science, glass-forming systems, plastic crystals, low-temperature physics, and broadband dielectric spectroscopy. With a strong foundation in both theoretical and experimental physics, he has significantly contributed to understanding the thermal and dielectric behaviors of orientationally disordered systems. His investigations using advanced techniques such as Differential Scanning Calorimetry (DSC) and temperature-controlled X-Ray Diffraction (X-RD) have shed light on the structural and phase transition dynamics of complex molecular materials. Dr. Nath earned his Ph.D. in Physics from the University of Calicut, Kerala, in 2022, where his thesis, “Thermal and Spectroscopic Investigations on Some Plastic Crystals,” provided deep insights into the thermal and dielectric relaxation mechanisms in molecular solids. His academic journey began with a B.Sc. in Physics from Zamorin’s Guruvayurappan College (2008) and an M.Sc. in Physics from CMS College, Kottayam (2012). Over the years, he has demonstrated a strong passion for advancing material characterization techniques and understanding the microscopic processes governing physical properties of crystalline and amorphous materials. Dr. Nath’s publication record reflects his rigorous approach to scientific inquiry. His works have appeared in prestigious journals such as Journal of Physics and Chemistry of Solids, Indian Journal of Physics, Journal of Molecular Liquids, and Materials Today Proceedings. Among his notable contributions are studies on tetrahedrally coordinated organic plastic crystals, phase transition dynamics in cyclohexene oxide, and dielectric relaxation in ionic liquids. These papers not only enrich the literature on material science but also open new pathways for the application of plastic crystals and related compounds in energy storage and optoelectronic devices. Beyond research, Dr. Nath is an accomplished academic mentor, having guided over 50 M.Sc. students in various experimental and theoretical projects between 2014 and 2020. Currently serving as a High School Assistant (Physical Science) at the Government Higher Secondary School, Kakkodi, Kozhikode, Kerala, since December 2022, he continues to inspire young minds with his deep scientific insight and enthusiasm for discovery. His career reflects a harmonious blend of scientific innovation, academic excellence, and educational commitment, establishing him as a promising researcher and educator in the field of condensed matter and material physics.

Profiles: Scopus | Orcid | Google Scholar

Featured Publications

Kottummal, T. K., Pilathottathil, S., Thayyil, M. S., Perumal, P. M., Sreekala, K. K. N., & Nighil Nath, M. P. (2018). Dielectric relaxation and electrochemical studies on trihexyl tetradecyl phosphonium chloride ionic liquid. Journal of Molecular Liquids, 252, 488–494.

Nighil Nath, M. P., & Sulaiman, M. K., & Thayyil, M. S. (2019). Thermal and dielectric spectroscopic investigation on orientationally disordered crystal—Cyclobutanol. Materials Today: Proceedings, 18, 1620–1626.

Manal Poovingal, N. N., Thayyil, M. S., Afzal, A., & Govindaraj, G. (2022). Thermal and dielectric studies on orientationally disordered crystal: Cyclobutanol. Indian Journal of Physics, 96(7), 1991–1999.

Afzal, A., Thayyil, M. S., Mohamed, M. N. S., Nighil Nath, M. P., & others. (2025). Broadband dielectric spectroscopic studies of acemetacin, colchicine and bezafibrate during quench cooling, and in supercooled liquid phase by dielectric modulus formalism. Indian Journal of Physics, 1–11.

Nath, M. P. N., Thayyil, M. S., & Afzal, A. (2025). Phase transition dynamics and dielectric relaxations in orientationally disordered crystal: A study of cyclohexene oxide. Journal of Physics and Chemistry of Solids, 207, 112839.

Nath, M. P. N., Thayyil, M. S., & Afzal, A. (2025). Thermal and dielectric spectroscopic investigations on tetrahedrally coordinated organic plastic crystals: Aminomethylpropanediol and pentaglycerol. Journal of Physics and Chemistry of Solids, 113019.

Kawther Meliani | Materials Science | Best Researcher Award | 13650

Mrs. Kawther Meliani | Materials Science | Best Researcher Award 

Laboratory of Physics of Experimental Techniques and its Applications | Algeria

Dr. Kawther Meliani is a dedicated researcher and Ph.D. candidate in Material Physics at the University of Medea, Algeria, affiliated with the Laboratory of Physics of Experimental Techniques and its Applications. Her core research focuses on Heusler alloys — specifically their structural, magnetic, electronic, and thermoelectric properties — which have wide-ranging applications in spintronics and energy conversion technologies. She utilizes a multidisciplinary approach, combining Density Functional Theory (DFT) simulations using tools like WIEN2k, Quantum ESPRESSO, and CASTEP with experimental synthesis and characterization techniques to validate theoretical models and accelerate materials discovery. Dr. Meliani has published three research papers in reputable SCI and Scopus-indexed journals, including Journal of Alloys and Compounds (Elsevier), Physica B: Condensed Matter, and the Brazilian Journal of Physics. Her publications have collectively received 9 citations, and she currently holds an h-index of 2, demonstrating early-career research impact and growing academic visibility. In addition to her publication record, she has participated in international conferences and research training, including a self-financed one-month collaboration at the University of Girona in Spain, and is preparing for further collaboration at Tohoku University in Japan. Dr. Meliani has made significant contributions to understanding the stability and electronic structure of full and half-metallic Heusler compounds, which are essential for developing next-generation spintronic devices and thermoelectric generators. Her work supports the design of functional materials with high performance and sustainability, aligned with global scientific priorities. Beyond her research, she is actively engaged in undergraduate teaching, fostering scientific curiosity and technical competence in physics students. With her commitment to innovation, cross-border collaboration, and academic rigor, Dr. Kawther Meliani represents a promising and impactful figure in the field of material physics. Her integration of theoretical modeling with hands-on experimentation sets her apart as a researcher who bridges scientific theory and real-world applications. She is a highly deserving candidate for the Best Researcher Award in recognition of her contributions and continued potential for scientific excellence.

Profiles: Scopus | Orcid | Google Scholar

Featured Publications

Meliani, K., Haireche, S., Bouchenafa, M., Elbaa, M., Douakh, S., & Chiker, R. (2024). Comprehensive analysis of the structural, electronic, elastic, and optical properties of SrS compound under pressure: First-principles calculations. Brazilian Journal of Physics, 54(2), 46.

Meliani, K., Dehbaoui, M., Djennane, K., & Dehimi, N. E. H. (2024). Pressure effect investigation of structural, electronic, elastic and magnetic properties of X₂CrSb (X = Mn, Co and Cu) Heusler alloys. Physica B: Condensed Matter, 694, 416442.

Haireche, S., Douakh, S., Elbaa, M., Bouchenafa, M., & Meliani, K. (2025). Influence of phase transition on the mechanical and optical properties of SrSe and SrTe compounds via ab initio calculations. Physica B: Condensed Matter, 696, 416610.

Dehimi, N. E. H., Mourad, D., Meliani, K., Djennane, K., Benaisti, I., & Ozdogan, K. (2025). Unveiling the pressure-induced properties and ambient thermoelectric behaviour of Co₂YZ (Z = Si, Ge, Sn) Heusler alloys. Physica Scripta. (In press)

Meliani, K., Dehbaoui, M., Sarhani, M. E. S., Benalia, A., Djennane, K., & others. (2025). Unveiling the antiferromagnetic Co₂−ₓFeₓCrSn (x = 0, 0.5, 1) hexagonal quaternary Heusler alloys: Experimental and theoretical study. Journal of Alloys and Compounds, In press, 183537.

Khaoula, D., Mourad, D., Elhouda, D. N., & Kawther, M. (2025). HfZFe candidate 2 (Z = Si, Ge, Sn), promising new materials for electronic and thermoelectric applications. In Proceedings of the 2nd International Conference of Nanotechnology for Renewable Energy (ICNRE).

Wenjihao Hu | Advanced Materials | 13507

Prof. Wenjihao Hu | Advanced Materials 

Prof. Wenjihao Hu, Central South University, China

Professor Wenjihao Hu is a distinguished scholar and Subdean at the School of Resource Processing and Biological Engineering, Central South University, China. As a doctoral supervisor and key member of national and provincial research centers, he has led several major national and international projects focusing on mineral processing, smart mining, and environmental remediation. With over 40 SCI-indexed publications and 10 patents, his innovations in nanoconfined adsorption materials have significantly advanced heavy metal removal techniques. Actively collaborating with top global institutions, Prof. Hu plays a vital role in academic leadership, research innovation, and the cultivation of future scientific talents.

Author Profile

Google Scholar

🎓 Early Academic Pursuits

Professor Wenjihao Hu’s academic journey began with a strong foundation in resource processing and biological engineering. His passion for materials science and environmental sustainability shaped his pursuit of higher education in mineral engineering and nanotechnology. This early dedication led him to academic excellence and specialization in interface chemistry and advanced mineral materials. His academic training prepared him for a multidisciplinary approach, combining colloidal science, surface interactions, and engineering applications. These formative experiences laid the groundwork for a prolific academic and research career centered on solving critical environmental and mineral resource challenges.

🧪 Professional Endeavors

Currently serving as a Professor and Subdean at the School of Resource Processing and Biological Engineering, Central South University, Prof. Hu holds several key leadership roles. He is a distinguished professor at the National Engineering Research Center for Individualized Diagnosis and Treatment Technology, a doctoral supervisor, and Deputy Department Director of the Department of Inorganics. His affiliations also include being a core member of Hunan Province’s key laboratories focusing on strategic calcium mineral resources and mineral materials applications, and a vital contributor to the National Engineering Technology Research Center for Heavy Metal Pollution Prevention.

Prof. Hu has hosted and contributed to numerous national and international research initiatives. These include one National Key R&D Program, two National Natural Science Foundation projects, and international collaborations with institutions such as the University of Alberta, McGill University, Columbia University, University of Queensland, Imperial College London, and many more.

🔬 Contributions and Research Focus: Advanced Materials 

Prof. Hu’s research spans across mineral energy, smart mining, mineral environment, mineral medicine, and applied colloid and interface science. His investigations into nano-confinement mechanisms, surface modification, and intermolecular forces are reshaping the field of mineral processing.

A key contribution includes his study on the nanoconfined adsorption structure ZrP@HNTs. By confining zirconium phosphate within halloysite nanotubes, his team achieved an extraordinary threefold increase in lead ion (Pb²⁺) adsorption capacity, enhancing both performance and stability. This innovation demonstrates how nanoconfinement can enrich ion concentration and facilitate superior surface interaction—a finding confirmed by atomic force microscopy (AFM) and finite element simulations. Such research is instrumental in advancing sustainable and high-efficiency heavy metal remediation technologies.

🏅 Accolades and Recognition

Prof. Hu is widely recognized for his leadership and scientific contributions. He holds prestigious editorial positions including:

  • Editorial Board Member of Chinese and English Journal of Nonferrous Metals

  • Youth Editorial Committee Member of the Journal of Engineering Science

  • Academic Editor of Minerals

  • Member of editorial teams for Comprehensive Utilization of Mineral Resources and Nonferrous Metal Science and Engineering

His professional memberships reflect his leadership in the field, including:

  • Deputy Secretary General, Mining Process Interface Chemistry Committee

  • Vice Chairman, China International Mineral Processing Young Scholars Forum

  • Executive Director, Chinese Ceramics Society

He has published over 40 SCI-indexed journal articles, registered 10 patents, and actively contributes to cutting-edge national research projects, including the National Natural Science Foundation Youth Project and postgraduate innovation projects at Central South University.

🌍 Impact and Influence

Prof. Hu’s multidisciplinary research and leadership have had a transformative impact on both academic and industrial domains. His collaborations with global institutions have fostered academic exchange, capacity building, and technology transfer across continents. He plays a crucial role in mentoring young researchers and postgraduate students, equipping the next generation with practical skills and theoretical insights in nanomaterials, surface chemistry, and sustainable engineering.

Furthermore, his innovative approaches to mineral interface chemistry and clean resource utilization address real-world environmental challenges, particularly in heavy metal pollution—a concern of growing international significance.

🧭 Legacy and Future Contributions

Prof. Wenjihao Hu continues to push boundaries in smart and sustainable mining, advanced material design, and nano-interface interactions. His ongoing projects aim to deepen our understanding of ion selectivity, gas enrichment of materials, and scale-up of nano-composite membranes.

As a core backbone of national and provincial key laboratories, his legacy lies not only in his scientific achievements but also in his commitment to education, collaboration, and public service. With an ever-growing network of international partnerships and a vision for environmental sustainability, Prof. Hu is poised to make even greater contributions in the decades to come.

✍️ Publication Top Notes


📘 Deposition and adhesion of polydopamine on the surfaces of varying wettability

Author: C Zhang, L Gong, L Xiang, Y Du, W Hu, H Zeng, ZK Xu
Journal: ACS applied materials & interfaces

Year: 2017


📘 A magnetic pH-induced textile fabric with switchable wettability for intelligent oil/water separation

Author: T Yan, X Chen, T Zhang, J Yu, X Jiang, W Hu, F Jiao
Journal: Chemical Engineering

Year: 2018


📘Unraveling roles of lead ions in selective flotation of scheelite and fluorite from atomic force microscopy and first-principles calculations

Author: J He, W Sun, H Zeng, R Fan, W Hu, Z Gao
Journal: Minerals Engineering
Year: 2022

Suresh Kumar | Nanomaterials | Best Researcher Award

Assoc Prof Dr. Suresh Kumar | Nanomaterials | Best Researcher Award

Assoc Prof Dr. Suresh Kumar, Maharishi Markandeshwar (Deemed to be University) Mullana, India

Dr. Suresh Kumar is a dedicated Indian physicist specializing in Physics and Materials Science, currently serving as Associate Professor (Grade II) at Maharishi Markandeshwar (Deemed to be University), Mullana, Haryana, India. With over 19 years of academic experience, including more than a decade post-Ph.D., he has significantly contributed to research, teaching, and institutional development.

Author Profile

Scopus 

Orcid

🎓 Early Academic Pursuits

Dr. Suresh Kumar’s academic journey is a testament to perseverance, dedication, and deep curiosity in the realm of physical sciences. Born on 2nd August 1978 in Hamirpur, Himachal Pradesh, India, he displayed an early inclination towards scientific inquiry. Completing his schooling from the Himachal Pradesh Board of School Education, he secured strong foundational marks in both 10th (72.57%) and 12th grade (51%).

Pursuing his passion, he obtained his Bachelor of Science (B.Sc.) in Non-Medical Stream from Himachal Pradesh University with a respectable 63.5%. His love for physics led him to earn a Master of Science (M.Sc.) in Physics from Dr. B.R. Ambedkar University, Agra (67.33%), followed by M.Phil. in Physics (72.5%) and Ph.D. in Physics & Materials Science from the prestigious Jaypee University of Information Technology in 2014.

His Ph.D. thesis titled “Structural, Morphological, Optical and Magnetic Properties of Pure and Transition Metal Doped Cadmium Sulphide Nanofilms at Room Temperature” laid the groundwork for his future research in advanced materials and nanotechnology. Additionally, Dr. Kumar pursued dual degrees in education—B.Ed. and M.Ed., demonstrating a profound commitment to teaching and pedagogy.

👨‍🏫 Professional Endeavors

Dr. Kumar’s teaching career spans over 19 years, including 11+ years post-Ph.D. at reputed universities and colleges in North India. His journey began as a Lecturer at Shivalik Institute of Engineering & Technology in 2007, followed by appointments as an Assistant Professor, Teaching Assistant, and ultimately Associate Professor (Grade II) at Maharishi Markandeshwar (Deemed to be University), Mullana, where he currently serves.

He has contributed immensely to institutional development by coordinating 16+ national and faculty development events, delivering expert talks, and mentoring both undergraduate and postgraduate students. His holistic involvement in academia includes supervision of 6 M.Sc. dissertations, guiding 3 Ph.D. scholars, and currently mentoring contributed immensely to institutional development by coordinating 3 more.

🔬 Contributions and Research Focus

Dr. Suresh Kumar is a researcher par excellence in the fields of nanomaterials, materials science, chalcogenide glasses, and green synthesis of nanoparticles. He has published 42 research articles in SCI/Scopus/WOS-indexed journals and authored/edited 5 books and 3 book chapters with ISBNs. His scientific works delve deep into the optical, electrical, and magnetic behaviors of transition metal nanostructures and nanofilms.

His notable publications include:

  • Solvothermal Synthesis of PVP-assisted CuS Structures for Sunlight-Driven Photocatalytic Degradation of Organic Dyes (Physica B, 2025).

  • Prediction of Physical Behavior of Bi-Modified Se-Ge Chalcogenide System (Journal of Nano-and Electronic Physics, 2025).

In addition to his research, Dr. Kumar holds 6 design patents, has reviewed over 100 research papers, and completed a university-funded research project, showcasing his versatile and practical contributions to science.

🏆 Accolades and Recognition

Dr. Kumar’s scholarly excellence and dedication have been recognized widely:

  • 6 academic awards and honors for his contributions in research and teaching.

  • Reviewer/editorial roles in 50+ reputed journals, indicating his expert standing in the global academic community.

  • Active membership in 6 professional bodies, reinforcing his involvement in the academic ecosystem.

He also boasts an impressive academic impact with:

  • Google Scholar Citations: 663 | H-index: 14

  • Scopus Citations: 471 | H-index: 11

  • WOS Citations: 524 | H-index: 11

These metrics reflect his global footprint in the research world.

🌍 Impact and Influence

Dr. Kumar’s influence transcends traditional teaching and research. He is a mentor, collaborator, and community educator, often invited to speak at academic events and conferences. He has participated in over 85 FDPs, refresher, and orientation programs, consistently upgrading his skills and disseminating knowledge to peers and students.

By integrating green nanotechnology, theoretical modeling, and material science innovation, Dr. Kumar contributes solutions to real-world environmental and technological challenges. His work on green synthesis using plant extracts is a fine example of blending traditional knowledge with modern science.

🚀 Legacy and Future Contributions

Dr. Suresh Kumar’s academic legacy is defined by multi-disciplinary research, inclusive teaching, and institutional leadership. He embodies the spirit of a 21st-century scientist-educator, contributing actively to India’s higher education and innovation landscape.

Looking ahead, Dr. Kumar aspires to:

  • Expand collaborative research networks in nanoscience and sustainable materials.

  • Secure national/international research grants.

  • Develop interdisciplinary programs that combine physics, environmental science, and materials engineering.

  • Publish more impactful research in green technologies and next-generation materials.

His future plans resonate with national goals like “Atmanirbhar Bharat” and Sustainable Development, making him a vital contributor to India’s scientific community.

✍️Publication Top Notes


📘Solvothermal synthesis of PVP-assisted CuS structures for sunlight-driven photocatalytic degradation of organic dyes

ContributorsVishal Dhiman; Suresh Kumar; Abhishek Kandwal; Pankaj Sharma; Ankush Thakur; Sanjay Kumar Sharma
Journal: Physica B: Condensed Matter
Year: 2025

📘Flexible surface plasmon based coupled triple band UHF-microwave sensor for glucose sensing application

Contributors: Abhishek Kandwal; Rohit Jasrotia; Suresh Kumar; Asha Kumari; Rahul Sharma; Ali M. Almuhlafi; Hamsakutty Vettikalladi
Journal: Sensors and Actuators A: Physical
Year: 2024

📘A comprehensive review on electromagnetic wave based non-invasive glucose monitoring in microwave frequencies

ContributorsAbhishek Kandwal; Yogeshwar Dutt Sharma; Rohit Jasrotia; Chan Choon Kit; Natrayan Lakshmaiya; Mika Sillanpää; Louis WY. Liu; Tobore Igbe; Asha Kumari; Rahul Sharma et al.
Journal: Heliyon
Year: 2024