Prashant Singh | Materials Science | Distinguished Scientist Award

Prof. Dr. Prashant Singh | Materials Science | Distinguished Scientist Award

Atma Ram Sanatan Dharma College, University of Delhi | India

Prof. Prashant Singh is a distinguished chemist and academic leader currently serving in the Department of Chemistry at Atma Ram Sanatan Dharma College, University of Delhi. With a career spanning teaching, research, and academic administration, he has made significant contributions to the fields of coordination chemistry, photochemistry, and materials science, with a particular emphasis on developing innovative luminescent coordination compounds and exploring their photophysical and catalytic properties. Prof. Singh obtained his B.Sc. and M.Sc. degrees from the University of Delhi before pursuing a Ph.D. in Chemistry at the Indian Institute of Technology (IIT) Delhi. His doctoral research centered on the design and synthesis of metal complexes with potential applications in light-emitting materials and photochemical processes—laying the foundation for his enduring interest in functional coordination compounds. Throughout his academic journey, Prof. Singh has demonstrated excellence in both research and teaching. He has guided numerous undergraduate and postgraduate research projects and has been instrumental in promoting inquiry-based learning and laboratory innovation in chemistry education. His research work encompasses diverse areas, including the synthesis of Schiff base and polypyridyl ligands, transition metal complexes, fluorescence quenching studies, and the development of new materials with optoelectronic relevance. Prof. Singh has authored and co-authored several research papers in reputed international journals and presented his findings at various national and international conferences. He has also contributed to academic book chapters and served as a reviewer for multiple scientific journals. Beyond his research, he has been deeply involved in academic governance and community engagement. As President of the ANDC Alumni Association and a key member of multiple institutional committees, he has fostered strong alumni relations and advanced institutional growth through collaborative initiatives. A passionate educator, Prof. Singh has received accolades for his innovative pedagogical methods and dedication to student mentorship. His commitment to bridging theoretical chemistry with experimental practice has inspired many students to pursue higher studies and research careers in chemistry and related disciplines. In addition to his teaching and research, Prof. Singh actively contributes to science outreach and public engagement, encouraging interdisciplinary collaboration and sustainable scientific development. He continues to explore emerging areas such as green chemistry and materials for energy applications, aligning his research interests with global scientific priorities. Prof. Prashant Singh stands out as a scholar whose academic rigor, leadership, and service to education embody the highest ideals of the University of Delhi. His work continues to impact both the academic community and society, contributing to the advancement of chemical sciences and the nurturing of future generations of researchers.

Profiles: Scopus | Google Scholar

Featured Publications

H, W., Naghavi, M., Allen, C., Barber, R. M., Bhutta, Z. A., Carter, A., Casey, D. C., et al. (2016). Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: A systematic analysis for the Global Burden of Disease Study 2015. The Lancet, 388(10053), 1459–1544. https://doi.org/10.1016/S0140-6736(16)31012-1

Tyagi, S., Sharma, B., Singh, P., & Dobhal, R. (2013). Water quality assessment in terms of water quality index. American Journal of Water Resources, 1(3), 34–38. https://doi.org/10.12691/ajwr-1-3-3

Singh, R. P., Shukla, V. K., Yadav, R. S., Sharma, P. K., Singh, P. K., & Pandey, A. C. (2011). Biological approach of zinc oxide nanoparticles formation and its characterization. Advanced Materials Letters, 2(4), 313–317. https://doi.org/10.5185/amlett.2011.1216

Singh, R., Singh, Y., Xalaxo, S., Verulkar, S., Yadav, N., Singh, S., Singh, N., et al. (2016). From QTL to variety—Harnessing the benefits of QTLs for drought, flood and salt tolerance in mega rice varieties of India through a multi-institutional network. Plant Science, 242, 278–287. https://doi.org/10.1016/j.plantsci.2015.08.008

Rana, R. S., Singh, P., Kandari, V., Singh, R., Dobhal, R., & Gupta, S. (2017). A review on characterization and bioremediation of pharmaceutical industries’ wastewater: An Indian perspective. Applied Water Science, 7(1), 1–12. https://doi.org/10.1007/s13201-014-0225-3

Bhatt, D. L., Steg, P. G., Mehta, S. R., Leiter, L. A., Simon, T., Fox, K., Held, C., et al. (2019). Ticagrelor in patients with diabetes and stable coronary artery disease with a history of previous percutaneous coronary intervention (THEMIS-PCI): A phase 3, placebo-controlled trial. The Lancet, 394(10204), 1169–1180. https://doi.org/10.1016/S0140-6736(19)31887-2

Sridhara, S. R., DiRenzo, M., Lingam, S., Lee, S. J., Blazquez, R., Maxey, J., et al. (2011). Microwatt embedded processor platform for medical system-on-chip applications. IEEE Journal of Solid-State Circuits, 46(4), 721–730. https://doi.org/10.1109/JSSC.2011.2107290

Aggarwal, S., Negi, S., Jha, P., Singh, P. K., Stobdan, T., Pasha, M. A. Q., Ghosh, S., et al. (2010). EGLN1 involvement in high-altitude adaptation revealed through genetic analysis of extreme constitution types defined in Ayurveda. Proceedings of the National Academy of Sciences, 107(44), 18961–18966. https://doi.org/10.1073/pnas.1006108107

Doudou Zhang | Materials Science | Best Researcher Award

Dr. Doudou Zhang | Materials Science | Best Researcher Award 

Macquarie University | Australia

Dr. Doudou Zhang is a distinguished Macquarie University Research Fellow (Vice-Chancellor Fellow) and lecturer in the School of Engineering, renowned for her pioneering contributions to functional materials and photoelectrochemical (PEC) energy systems. Her research focuses on the development of advanced materials and device architectures for solar-to-hydrogen conversion, CO₂ reduction, and sustainable ammonia synthesis, integrating materials design, device engineering, and artificial intelligence (AI)-driven approaches to accelerate innovation in renewable energy technologies. Dr. Zhang received her Ph.D. in Chemistry from Shaanxi Normal University, followed by a prestigious postdoctoral research fellowship at the Australian National University (ANU) from 2019 to 2024, where she specialized in photo(electro)catalysis for sustainable hydrogen production. At Macquarie University, she leads several cutting-edge research projects as both sole and co-chief investigator, including the ARENA project (KC012) on accelerating the commercialization of direct solar-to-hydrogen technology (A$2.25M; A$163K at MQ), an ARC Discovery Project (DP250104928) on zero-gap photoelectrochemical ammonia synthesis (A$580K), and the Macquarie University Research Fellowship project on the direct synthesis of earth-abundant bifunctional catalysts (A$848K). Her research portfolio demonstrates a remarkable ability to attract competitive national and industry funding, exceeding A$10 million in cumulative project value through collaborations with industry leaders such as Fortescue Future Industries (FFI). Her earlier work as a main investigator contributed to multiple high-impact projects, including ARENA and FFI-funded initiatives focused on developing low-cost perovskite/silicon semiconductors and macroelectrode electrolysis systems, each driving substantial advances in low-cost green hydrogen production. Beyond academic research, Dr. Zhang has actively engaged with industry, leading consultancy projects like the AEA Ignite initiative (A$489K) for developing durable roll-to-roll functional coatings for next-generation energy devices. Dr. Zhang has achieved an H-index of 21 and over 1,970 citations (Google Scholar, October 2025), reflecting the global influence of her research in energy materials. She has authored 38 peer-reviewed journal papers, 1 book chapter, and 12 granted patents (including one patent that attracted A$833K industrial funding). Her publications are consistently featured in top-tier journals such as Energy & Environmental Science, Advanced Energy Materials, Applied Physics Reviews, Chemical Engineering Journal, Materials Today Energy, Angewandte Chemie International Edition, and Progress in Materials Science. Notably, over 31% of her works rank within the top 10% citation percentiles, and 76% are among the top 25% most cited papers globally. Her contributions also extend to scholarly authorship and thought leadership, including an invited chapter titled “Advances in Perovskite-Based Photocatalysts: Materials Design, Mechanisms, and Applications” in Semiconductors and Semimetals (Elsevier, 2025). Dr. Zhang’s recent works demonstrate the integration of AI and machine learning in catalyst discovery, as seen in her publication “Prospects of AI in Advancing Green Hydrogen Production”.

Profiles: Scopus | Orcid | Google Scholar

Featured Publications

Zhang, D., & Co-authors. (2025, September 25). Minimizing buried interface energy losses via urea phosphate derivatives enable high-efficiency carbon-based mesoscopic perovskite solar cells. Small. https://doi.org/10.1002/smll.202507384

Zhang, D., Pan, W., Lu, H., Wang, Z., Gupta, B., Oo, A. T., Wang, L., Reuter, K., Li, H., Jiang, Y., & Karuturi, S. (2025, September 1). Prospects of AI in advancing green hydrogen production: From materials to applications. Applied Physics Reviews, 12(3), 031335. https://doi.org/10.1063/5.0281416

Attar, F., Riaz, A., Zhang, D., Lu, H., Thomsen, L., & Karuturi, S. (2025, August 15). Advanced NiMoC electrocatalysts precisely synthesized at room temperature for efficient hydrogen evolution across pH ranges. Chemical Engineering Journal, 518, 164494. https://doi.org/10.1016/j.cej.2025.164494

Zhang, D., Pan, W. S., Sharma, A., Shen, H., Lem, O., Saraswathyvilasam, A., Yang, C., Weber, K., Wu, Y., Catchpole, K., Oo, A. T., & Karuturi, S. (2025, March). Over 14% unassisted water splitting driven by immersed perovskite/Si tandem photoanode with Ni-based catalysts. Materials Today Energy, 48, 101809. https://doi.org/10.1016/j.mtener.2025.101809

Wang, P., Oo, A. T., Chen, L., & Zhang, D. (2025). Recent advances of interfacial modification over tantalum nitride photoanodes for solar water oxidation: A mini review. Frontiers in Chemistry, 13, 1600959. https://doi.org/10.3389/fchem.2025.1600959

Zhang, D., Pan, W., Jiang, Y., & Co-authors. (2024, December 28). Defect management and crystallization regulation for high-efficiency carbon-based printable mesoscopic perovskite solar cells via a single organic small molecule. Journal of Materials Chemistry A. https://doi.org/10.1039/d4ta06877g

Ding, J., Zhang, D., Riaz, A., Gu, H., Soo, J. Z., Narangari, P. R., Jagadish, C., Tan, H. H., & Karuturi, S. (2024, November). Scalable amorphous NiFe(OH)x/Fe/graphene bifunctional electrocatalyst via solution-corrosion for water splitting. CCS Chemistry, 6, 2692–2703. https://doi.org/10.31635/ccschem.024.202404423

Zhang, D., & Co-authors. (2024, July 5). Solar-driven ammonia synthesis with Co–TiOx and Ag nanowires enhanced Cu₂ZnSnS₄ photocathodes. Applied Catalysis B: Environmental, 348, 123836. https://doi.org/10.1016/j.apcatb.2024.123836

Bramhaiah Kommula | Materials Science | Best Researcher Award

Assist Prof Dr. Bramhaiah Kommula | Materials Science | Best Researcher Award

Assist Prof Dr. Bramhaiah Kommula | St. Joseph’s University Bangalore | India

Dr. Bramhaiah Kommula is an accomplished researcher and academic currently serving as an Assistant Professor in the Department of Chemistry at St. Joseph’s University, Bengaluru. His research embodies a multidisciplinary approach at the intersection of nanomaterials, photochemistry, and sustainable energy, with a focus on developing advanced functional luminescent nanomaterials for energy conversion, storage, and environmental remediation. Dr. Kommula earned his Ph.D. in Chemistry from Mangalore University in 2018 under the supervision of Dr. Neena S. John at the Centre for Nano and Soft Matter Sciences (CeNS), Bengaluru, where he investigated the “Synthesis and Properties of Graphene-Based Hybrid Materials Employing Chemical Routes.” Following his doctoral studies, Dr. Kommula pursued postdoctoral research at prestigious institutes including IISER Berhampur (2019–2022) with Dr. Santanu Bhattacharyya and IISER Mohali (2022–2024) with Prof. Ujjal K. Gautam. His postdoctoral work focused on the design and engineering of carbon-based nanostructures and their photocatalytic applications in solar fuel generation, hydrogen evolution, and selective organic transformations. He also contributed to the development of metal-free, waste-derived carbon dots and explored their photophysical properties for green hydrogen production, CO₂ reduction, and photoinduced organic catalysis. Dr. Kommula’s current research at St. Joseph’s University integrates nanomaterial synthesis, photophysical studies, and energy applications, emphasizing sustainable approaches to convert plastic waste into high-value carbon dots (CDs) and utilize them as efficient metal-free photocatalysts. Dr. Kommula has also authored several book chapters published by Springer Nature and holds a provisional Indian patent on graphitic carbon dots. Dr. Kommula’s research excellence has been acknowledged through several prestigious fellowships, including Institute Postdoctoral Fellowships from IISER Mohali and IISER Berhampur, and DST Senior and Junior Research Fellowships. His scientific leadership is evident in his ongoing supervision of three Ph.D. students and his submission of major national funding proposals under ANRF and DST schemes aimed at developing sustainable photocatalytic systems for hydrogen and value-added chemical production. Overall, Dr. Bramhaiah Kommula’s research exemplifies innovation-driven science that bridges materials chemistry and renewable energy technologies. His long-term goal is to pioneer eco-friendly nanomaterials that transform environmental waste into useful resources, contributing significantly toward achieving sustainable energy solutions and carbon-neutral technologies for the future.

Profiles: Orcid | Google Scholar

Featured Publications

Kommula, B., & Sriramadasu, V. K. (2025). Room temperature red phosphorescence enabled by alkali treatment in niobium carbide-derived carbon dots. Journal of Luminescence, 274, 121591. https://doi.org/10.1016/j.jlumin.2025.121591

Roy, R. S., Sil, S., Mishra, S., Banoo, M., Swarnkar, A., Kommula, B., De, A. K., & Gautam, U. K. (2025). Layer width engineering in carbon nitride for enhanced exciton dissociation and solar fuel generation. ACS Materials Letters, 7(4), 1385–1393.

Mandal, R., Biswal, J. R., Kommula, B., & Bhattacharyya, S. (2025). 2,2′:5′,2″:5″,2‴‐Quaterthiophene nanoparticles and single-walled CNT composite: An organic nanohybrid for solar H₂ production and simultaneous photoreformation of plastic wastes. ChemCatChem, 17(3), e202500307.

Kommula, B., & Gautam, U. K. (2025). A two-step strategy for residue-free chemical conversion of plastic waste to carbon dots: Upscaling and solvent recycling prospects. Carbon, 234, 119960.

Dutta, B., Kommula, B., Kanwar, K., Gautam, U. K., & Sarma, D. (2025). Oxygen-harvesting carbon dot photocatalysts for ambient tandem oxidative synthesis of quinazolin-4(3H)-ones. Green Chemistry, 27(1), Article D5GC00962F.

Kommula, B., Kanwar, K., & Gautam, U. K. (2024). Waste polyethylene-derived carbon dots: Administration of metal-free oxidizing agents for tunable properties and photocatalytic hyperactivity. ACS Applied Materials & Interfaces, 16(31), 39470–39481.