Bramhaiah Kommula | Materials Science | Best Researcher Award

Assist Prof Dr. Bramhaiah Kommula | Materials Science | Best Researcher Award

Assist Prof Dr. Bramhaiah Kommula | St. Joseph’s University Bangalore | India

Dr. Bramhaiah Kommula is an accomplished researcher and academic currently serving as an Assistant Professor in the Department of Chemistry at St. Joseph’s University, Bengaluru. His research embodies a multidisciplinary approach at the intersection of nanomaterials, photochemistry, and sustainable energy, with a focus on developing advanced functional luminescent nanomaterials for energy conversion, storage, and environmental remediation. Dr. Kommula earned his Ph.D. in Chemistry from Mangalore University in 2018 under the supervision of Dr. Neena S. John at the Centre for Nano and Soft Matter Sciences (CeNS), Bengaluru, where he investigated the “Synthesis and Properties of Graphene-Based Hybrid Materials Employing Chemical Routes.” Following his doctoral studies, Dr. Kommula pursued postdoctoral research at prestigious institutes including IISER Berhampur (2019–2022) with Dr. Santanu Bhattacharyya and IISER Mohali (2022–2024) with Prof. Ujjal K. Gautam. His postdoctoral work focused on the design and engineering of carbon-based nanostructures and their photocatalytic applications in solar fuel generation, hydrogen evolution, and selective organic transformations. He also contributed to the development of metal-free, waste-derived carbon dots and explored their photophysical properties for green hydrogen production, CO₂ reduction, and photoinduced organic catalysis. Dr. Kommula’s current research at St. Joseph’s University integrates nanomaterial synthesis, photophysical studies, and energy applications, emphasizing sustainable approaches to convert plastic waste into high-value carbon dots (CDs) and utilize them as efficient metal-free photocatalysts. Dr. Kommula has also authored several book chapters published by Springer Nature and holds a provisional Indian patent on graphitic carbon dots. Dr. Kommula’s research excellence has been acknowledged through several prestigious fellowships, including Institute Postdoctoral Fellowships from IISER Mohali and IISER Berhampur, and DST Senior and Junior Research Fellowships. His scientific leadership is evident in his ongoing supervision of three Ph.D. students and his submission of major national funding proposals under ANRF and DST schemes aimed at developing sustainable photocatalytic systems for hydrogen and value-added chemical production. Overall, Dr. Bramhaiah Kommula’s research exemplifies innovation-driven science that bridges materials chemistry and renewable energy technologies. His long-term goal is to pioneer eco-friendly nanomaterials that transform environmental waste into useful resources, contributing significantly toward achieving sustainable energy solutions and carbon-neutral technologies for the future.

Profiles: Orcid | Google Scholar

Featured Publications

Kommula, B., & Sriramadasu, V. K. (2025). Room temperature red phosphorescence enabled by alkali treatment in niobium carbide-derived carbon dots. Journal of Luminescence, 274, 121591. https://doi.org/10.1016/j.jlumin.2025.121591

Roy, R. S., Sil, S., Mishra, S., Banoo, M., Swarnkar, A., Kommula, B., De, A. K., & Gautam, U. K. (2025). Layer width engineering in carbon nitride for enhanced exciton dissociation and solar fuel generation. ACS Materials Letters, 7(4), 1385–1393.

Mandal, R., Biswal, J. R., Kommula, B., & Bhattacharyya, S. (2025). 2,2′:5′,2″:5″,2‴‐Quaterthiophene nanoparticles and single-walled CNT composite: An organic nanohybrid for solar H₂ production and simultaneous photoreformation of plastic wastes. ChemCatChem, 17(3), e202500307.

Kommula, B., & Gautam, U. K. (2025). A two-step strategy for residue-free chemical conversion of plastic waste to carbon dots: Upscaling and solvent recycling prospects. Carbon, 234, 119960.

Dutta, B., Kommula, B., Kanwar, K., Gautam, U. K., & Sarma, D. (2025). Oxygen-harvesting carbon dot photocatalysts for ambient tandem oxidative synthesis of quinazolin-4(3H)-ones. Green Chemistry, 27(1), Article D5GC00962F.

Kommula, B., Kanwar, K., & Gautam, U. K. (2024). Waste polyethylene-derived carbon dots: Administration of metal-free oxidizing agents for tunable properties and photocatalytic hyperactivity. ACS Applied Materials & Interfaces, 16(31), 39470–39481.