Yoshiaki Kanamori | Materials for 5G and Beyond | Best Researcher Award

Prof. Yoshiaki Kanamori | Materials for 5G and Beyond | Best Researcher Award

Professor at Tohoku University, Japan.

Yoshiaki Kanamori is a prominent professor at Tohoku University, where he directs the Metamaterials Research and Innovation Center (Meta-RIC) and contributes to the Green Future Creation Organization. With a Ph.D. in Mechanical and Electronic Engineering, his career includes significant roles such as Associate Professor at Tohoku University and a postdoctoral researcher in France. His research focuses on robotics, metamaterials, and nanotechnology, particularly in designing and characterizing metamaterials, advancing nanofabrication techniques, and developing nanostructure-based optical devices. His work also encompasses precision engineering, enhancing the development of high-precision instruments. Kanamori’s interdisciplinary approach and extensive expertise drive significant innovations in various technological fields, making him a leading figure in his areas of specialization.

Professional Profiles:

🎓 Education

Yoshiaki Kanamori’s academic career is marked by a strong foundation in engineering, culminating in a Ph.D. from Tohoku University’s Graduate School of Engineering in 2001. His doctoral studies equipped him with expertise that led to roles of increasing responsibility within the university, starting as an Assistant Professor in 2001 and progressing to Associate Professor by 2007. Kanamori’s academic journey further expanded with a postdoctoral stint at the Laboratory of Photonics and Nanostructure/CNRS in France in 2003, enriching his research insights. He was appointed Professor in 2019 and has since taken on concurrent leadership roles, including Director of the Metamaterials Research and Innovation Center (Meta-RIC) and a Professorship at the Green Future Creation Organization, both at Tohoku University. His academic affiliations with esteemed societies underscore his commitment to advancing engineering and applied physics, reflecting his pivotal role in shaping research and innovation in Japan.

Professional Experience

Yoshiaki Kanamori is a prominent academic and researcher renowned for his contributions to robotics and metamaterials at Tohoku University. With a Ph.D. in Mechanical and Electronic Engineering from Tohoku University, he began his career as an Assistant Professor in 2001, swiftly advancing to roles of increasing responsibility. His international experience includes a pivotal postdoctoral stint at the Laboratory of Photonics and Nanostructure/CNRS in France. Promoted to Professor in 2019, Kanamori now serves as Director of the Metamaterials Research and Innovation Center (Meta-RIC) and holds a concurrent position at the Green Future Creation Organization since 2023. His research focuses on pushing the boundaries of nanotechnology and precision engineering, positioning him as a leading authority in his field both in Japan and globally.

Research Interest

Yoshiaki Kanamori’s research interests span the fields of robotics, metamaterials, nanotechnology, and precision engineering. He explores novel applications of metamaterials for advanced functionalities in robotics, focusing on developing materials with engineered properties beyond those found in nature. His work in nanotechnology includes the development of nanostructures and nanomachining techniques aimed at creating precise and efficient devices. Kanamori is also interested in photonics, particularly in nanostructure design and their applications in optical devices. His research aims to advance the understanding and application of these cutting-edge technologies, contributing to both fundamental knowledge and practical innovations in fields ranging from robotics to photonics.

Research Skills

Yoshiaki Kanamori is a distinguished researcher renowned for his expertise in robotics, metamaterials, and nanotechnology. As Professor at Tohoku University, he leads pioneering research at the Metamaterials Research and Innovation Center (Meta-RIC) and the Green Future Creation Organization. With a Ph.D. in Mechanical and Electronic Engineering from Tohoku University, Kanamori’s career spans significant academic and international research experience. His work includes designing and characterizing metamaterials with tailored electromagnetic properties, advancing nanofabrication techniques, and integrating these innovations into robotic systems. Kanamori has also contributed extensively to photonics and optical engineering, focusing on nanostructure-based optical devices. His research prowess extends to precision engineering, enhancing the development of high-precision instruments and devices. Through his interdisciplinary approach, Kanamori continues to push the boundaries of scientific exploration, driving innovations that promise transformative impacts across various technological domains.

Publications

  1. Wavelength calibration using MEMS-enabled double filter configuration for air gap sensing in the tunable Fabry-Pérot filter
    • Authors: Sahani, P., Nabana, S., Okatani, T., Inomata, N., Kanamori, Y.
    • Year: 2024
    • Citations: 0
  2. Feasibility test on the analog configuration of electromechanical dimple-tip cantilever for the application of THz metamaterials
    • Authors: Huang, Y., Okatani, T., Inomata, N., Kanamori, Y.
    • Year: 2024
    • Citations: 0
  3. Pixelated gradient thickness optical filter for visible light spectroscopy
    • Authors: Sahani, P., Nabana, S., Okatani, T., Inomata, N., Kanamori, Y.
    • Year: 2024
    • Citations: 1
  4. Terahertz stretchable metamaterials with deformable dolmen resonators for uniaxial strain measurement
    • Authors: Okatani, T., Dashdeleg, M.-O., Inomata, N., Kanamori, Y.
    • Year: 2024
    • Citations: 0
  5. Fabrication and characterization of delay lines with spoof surface plasmon polariton waveguide coupled with C-shaped metamaterials for microwave integrated circuits
    • Authors: Nguyen, M.V., Kikuchi, N., Kodama, T., Inomata, N., Kanamori, Y.
    • Year: 2024
    • Citations: 0
  6. Tunable Fabry–Perot interferometer operated in the terahertz range based on an effective refractive index control using pitch-variable subwavelength gratings
    • Authors: Huang, Y., Liu, Y., Okatani, T., Inomata, N., Kanamori, Y.
    • Year: 2024
    • Citations: 1
  7. 3D Bulk Metamaterials with Engineered Optical Dispersion at Terahertz Frequencies Utilizing Amorphous Multilayered Split-Ring Resonators
    • Authors: Huang, Y., Kida, T., Wakiuchi, S., Inomata, N., Kanamori, Y.
    • Year: 2024
    • Citations: 0
  8. Phase-Controllable Spoof Surface Plasmon Coupling from Bull’s Eye Aperture to Planar Silicon Waveguide in the Terahertz Band
    • Authors: Okatani, T., Imai, K., Takida, Y., Minamide, H., Kanamori, Y.
    • Year: 2024
    • Citations: 0
  9. Fabrication of functional metamaterials for applications in heat-shielding windows and 6G communications
    • Authors: Van Nguyen, M., Okatani, T., Kanamori, Y.
    • Year: 2023
    • Citations: 2
  10. Reconfigurable THz metamaterial based on microelectromechanical cantilever switches with a dimpled tip
    • Authors: Huang, Y., Okatani, T., Inomata, N., Kanamori, Y.
    • Year: 2023
    • Citations: 5

 

Md. Eyazul Haque | Materials Science | Best Researcher Award

Dr. Md. Eyazul Haque | Materials Science | Best Researcher Award

Postdoctoral Research Fellow at Bangladesh University of Engineering and Technology, Bangladesh.

Dr. Md. Eyazul Haque is an accomplished chemist specializing in analytical and technical roles. With a Ph.D. in Chemistry from BUET, he has extensive experience in spectroscopic and chromatographic techniques, nanocomposite fabrication, and phytochemical analysis. Dr. Haque has held positions as a Technical Expert at Alpha Agro Ltd. and an Analytical Chemist at Sea Trade Fertilizer Ltd., where he developed and formulated pesticides and bio-pesticides, and designed wastewater treatment plants. His academic excellence is highlighted by multiple awards and fellowships, including the Academic Excellence Award and Dr. Zaman Fellowship. He has a strong publication record with research focused on natural fiber-reinforced thermoplastic nanocomposites and the phytochemical properties of medicinal plants. Dr. Haque’s expertise in chemical analysis, instrument handling, and research documentation has significantly contributed to materials science, environmental chemistry, and sustainable agriculture.

Professional Profiles:

Education 🎓

Dr. Md. Eyazul Haque is a distinguished Postdoctoral Research Fellow in Chemistry at the Bangladesh University of Engineering & Technology (BUET). He completed his Ph.D. in Chemistry at BUET, graduating with First Class honors and a CGPA of 3.50 in 2020. His doctoral research earned him the Academic Excellence Award and a Ph.D. Fellowship, highlighting his outstanding academic and research accomplishments. Prior to his doctoral studies, Dr. Haque pursued an M.Phil in Chemistry at BUET, where he also graduated with First Class honors and a CGPA of 3.08 in 2016. His M.Phil studies were supported by the Dr. Zaman Fellowship and a Teaching Assistantship. Dr. Haque’s academic journey began at the National University, where he completed his M.Sc (Thesis) in Chemistry with First Class honors and a remarkable 70% score in 2011, for which he was awarded an M.Sc Scholarship. He also holds a B.Sc (Honors) in Chemistry from the same institution, graduating with First Class honors and a 64% score in 2010. His foundational education includes a Higher Secondary Certificate (HSC) in Science from Bangabandhu College, where he achieved a GPA of 2.80 in 2003, and a Secondary School Certificate (Dakhil) in Science from Nohata A.G. Fazil Madrasha, graduating with a GPA of 3.83 in 2001.

Professional Experience

Dr. Md. Eyazul Haque is an experienced chemist with significant expertise in analytical and technical roles. From 2019 to 2023, he served as a Technical Expert at Alpha Agro Ltd., where he developed and formulated pesticides and bio-pesticides, utilizing techniques such as TLC, RCC, GC, GC-MS, HPLC, IR, UV, and NMR spectroscopy. He also designed pesticide formulation plants and effluent treatment plants, specializing in bio-pesticides from Azadirachta indica and Swietenia mahogany. Previously, Dr. Haque worked as an Analytical Chemist at Sea Trade Fertilizer Ltd. (2014-2019), where he quantified and qualified pesticides and managed wastewater treatment parameters. His career began as a Teaching Assistant at BUET (2012-2013), where he trained students in chemical analysis. Dr. Haque holds a Ph.D. in Chemistry from BUET, demonstrating his strong academic background and research skills.

🔬 Research Interests 🔬

Dr. Md. Eyazul Haque’s research interests encompass a broad spectrum of topics in chemistry. He is particularly focused on the fabrication and characterization of natural fiber-reinforced thermoplastic nanocomposites, aiming to enhance their physicochemical and mechanical properties. His work in phytochemical and biological investigations of plants, such as Vitex peduncularis and Swietenia mahogany, explores their potential for developing bio-pesticides and other sustainable agricultural solutions. Dr. Haque is also interested in the synthesis and characterization of nanocomposites, specifically those reinforced with natural fibers like wheat straw and sawdust, to improve their thermal and mechanical performance. His research extends to the antioxidant potential of medicinal plants and their phytochemical constituents, contributing to advancements in pharmaceutical and nutraceutical applications. Through his diverse research endeavors, Dr. Haque aims to contribute to the fields of materials science, environmental chemistry, and sustainable agriculture.

🏆 Awards and Honors 🏆

Dr. Md. Eyazul Haque has been recognized for his academic and research excellence with several awards and honors throughout his career. During his Ph.D. program at BUET, he received the Academic Excellence Award for his outstanding academic and research accomplishments. He was also awarded a Ph.D. Fellowship, which supported his doctoral studies. In his M.Phil program, he earned the prestigious Dr. Zaman Fellowship and served as a Teaching Assistant, showcasing his dedication to both research and teaching. Additionally, Dr. Haque received an M.Sc Scholarship during his master’s studies at the National University, highlighting his consistent academic performance and commitment to advancing his knowledge and expertise in the field of chemistry.

🛠️ Research Skills 🛠️

Dr. Md. Eyazul Haque possesses a diverse range of research skills essential for advanced chemical analysis and materials science. He is proficient in various spectroscopic techniques, including GC, GC-MS, HPLC, IR, UV, and NMR, for analyzing and characterizing chemical compounds. His expertise extends to chromatographic techniques such as TLC and RCC. Dr. Haque specializes in the fabrication and characterization of natural fiber-reinforced thermoplastic nanocomposites and conducts phytochemical investigations of medicinal plants for bio-pesticide development. He is skilled in wastewater analysis, determining parameters like pH, TDS, DO, COD, and BOD. Additionally, he is adept at handling and troubleshooting analytical instruments, particularly GC and HPLC. Dr. Haque’s research documentation skills are evidenced by his numerous publications in reputable journals. His comprehensive skill set significantly contributes to advancements in materials science, environmental chemistry, and sustainable agriculture.

Publications

  • Synthesis, characterization and performance of nanocopper impregnated sawdust-reinforced nanocomposite
    • Authors: Haque, M.E., Khan, M.W., Hasan, M.M., Chowdhury, M.N.K.
    • Journal: Polymer Bulletin, 2023
    • Volume: 80
    • Issue: 11
    • Pages: 12393–12416
    • Citations: 2
  • Studies on morphological, physico-chemical and mechanical properties of wheat straw reinforced polyester resin composite
    • Authors: Haque, M.E., Khan, M.W., Rani, M.
    • Journal: Polymer Bulletin, 2022
    • Volume: 79
    • Issue: 5
    • Pages: 2933–2952
    • Citations: 9
  • Synthesis, characterization, biocompatibility, thermal and mechanical performances of sawdust reinforced composite
    • Authors: Haque, M.E., Khan, M.W., Kabir Chowdhury, M.N.
    • Journal: Polymer Testing, 2020
    • Volume: 91
    • Pages: 106764
    • Citations: 6

 

 

Sanjay Basumatary | Chemistry and Materials Science | Best Researcher Award

Prof. Sanjay Basumatary | Chemistry and Materials Science | Best Researcher Award

Professor at Bodoland University, India.

Dr. Sanjay Basumatary is a distinguished academician and researcher in Chemistry, currently serving as Professor and Head of the Department of Chemistry at Bodoland University, India. He holds a Ph.D. in Chemistry from Gauhati University, with expertise in renewable energy, biodiesel production, catalysis, phytochemistry, and adsorption studies. Throughout his career, Dr. Basumatary has demonstrated strong research acumen, proficient in experimental design, analytical techniques, data analysis, and literature synthesis. He has received prestigious awards including the CSIR-UGC NET and UGC Rajiv Gandhi National JRF, recognizing his contributions to the field. Dr. Basumatary is committed to advancing sustainable practices and has a robust publication record, presenting his research globally to foster collaborations and innovation in Chemistry.

Professional Profiles:

Education 🎓

Dr. Sanjay Basumatary pursued his academic journey in Chemistry with a Ph.D. from Gauhati University, Guwahati, completing his thesis on “Transesterification of Non-edible Vegetable Oils Using a Novel Catalyst Derived from Banana Plant and Technical Assessment of the Products as Biodiesel” in 2012. Prior to his doctoral studies, he earned his M.Sc. in Organic Chemistry from the same institution in 2007. His undergraduate education began at Kokrajhar Govt. College, where he obtained a B.Sc. in Chemistry in 2005. These educational achievements have equipped Dr. Basumatary with a strong foundation in Chemistry, facilitating his subsequent career in academia and research at Bodoland University, where he currently serves as Professor and Head of the Department of Chemistry.

Professional Experience

Dr. Sanjay Basumatary has built a distinguished career in academia, specializing in Chemistry. Currently serving as Professor and Head of the Department of Chemistry at Bodoland University, Kokrajhar, he has been instrumental in shaping the academic landscape. His journey began as an Assistant Professor at Bineswar Brahma Engineering College, Kokrajhar, where he taught from August 2010 to August 2014. Subsequently, he joined Bodoland University as an Assistant Professor in August 2014 and steadily progressed to the position of Assistant Professor (Senior Scale) before assuming the role of Professor in November 2021. Throughout his career, Dr. Basumatary has also held various administrative roles within the Department of Chemistry, including several stints as Acting Head and currently as Head since December 2021. His tenure has been marked by significant contributions to teaching, research guidance, and administrative leadership, consolidating his reputation as a respected figure in the field of Chemistry education and research.

Research Interest

Dr. Sanjay Basumatary’s research interests encompass a broad spectrum within Chemistry, focusing particularly on areas crucial to sustainable development and innovation. His primary research interests include Renewable Energy, with a specific emphasis on Biodiesel production and catalysis. Additionally, he delves into Phytochemistry, exploring the chemical composition and properties of natural products derived from plants. His research also extends to Adsorption studies, investigating the application of adsorbents in environmental and industrial contexts. Through his multifaceted research endeavors, Dr. Basumatary contributes significantly to advancing knowledge and solutions in these critical areas of Chemistry.

Award and Honors

Dr. Sanjay Basumatary has received notable awards and honors in recognition of his academic and research contributions. He was awarded the CSIR-UGC NET in 2009, highlighting his expertise in Chemistry and qualifying him for national-level research fellowships. Additionally, he earned the prestigious UGC Rajiv Gandhi National Junior Research Fellowship (JRF) from 2008 to 2010, further underscoring his dedication to advancing research in his field. These accolades reflect Dr. Basumatary’s commitment to excellence in academia and his significant contributions to the field of Chemistry, particularly in sustainable energy and natural product chemistry.

Research Skills

Dr. Sanjay Basumatary possesses a diverse range of research skills crucial to his contributions in Chemistry. His expertise encompasses proficient experimental design and execution, particularly in areas such as renewable energy, biodiesel production, catalysis, phytochemistry, and adsorption studies. He is adept at employing various analytical techniques, including spectroscopy (UV-Vis, IR), chromatography (GC-MS, HPLC), and microscopy (SEM, TEM) for detailed chemical analysis and characterization. Dr. Basumatary excels in data analysis, employing statistical methods to interpret experimental results effectively and derive meaningful conclusions. Furthermore, he demonstrates strong capabilities in conducting thorough literature reviews to establish the theoretical foundations of his research. He has a proven track record in publishing research findings in esteemed journals and presenting his work at national and international conferences. Additionally, his skills extend to grant writing, project management, and fostering collaborative research efforts, underscoring his commitment to advancing knowledge and innovation in Chemistry.

Publications

  1. High quality biodiesel from yellow oleander (Thevetia peruviana) seed oil
    • Authors: DC Deka, S Basumatary
    • Year: 2011
    • Citations: 226
  2. Biodiesel production from mixed oils: A sustainable approach towards industrial biofuel production
    • Authors: S Brahma, B Nath, B Basumatary, B Das, P Saikia, K Patir, S Basumatary
    • Year: 2022
    • Citations: 190
  3. Waste to value addition: Utilization of waste Brassica nigra plant derived novel green heterogeneous base catalyst for effective synthesis of biodiesel
    • Authors: B Nath, B Das, P Kalita, S Basumatary
    • Year: 2019
    • Citations: 168
  4. Highly efficient renewable heterogeneous base catalyst derived from waste Sesamum indicum plant for synthesis of biodiesel
    • Authors: B Nath, P Kalita, B Das, S Basumatary
    • Year: 2020
    • Citations: 109
  5. Utilization of renewable and sustainable basic heterogeneous catalyst from Heteropanax fragrans (Kesseru) for effective synthesis of biodiesel from Jatropha curcas oil
    • Authors: S Basumatary, B Nath, B Das, P Kalita, B Basumatary
    • Year: 2021
    • Citations: 101
  6. Application of agro-waste derived materials as heterogeneous base catalysts for biodiesel synthesis
    • Authors: S Basumatary, B Nath, P Kalita
    • Year: 2018
    • Citations: 81
  7. Waste Musa paradisiaca plant: an efficient heterogeneous base catalyst for fast production of biodiesel
    • Authors: B Basumatary, S Basumatary, B Das, B Nath, P Kalita
    • Year: 2021
    • Citations: 74
  8. Transesterification with heterogeneous catalyst in production of biodiesel: A Review
    • Authors: S Basumatary
    • Year: 2013
    • Citations: 69
  9. Production of renewable biodiesel using metal organic frameworks based materials as efficient heterogeneous catalysts
    • Authors: SF Basumatary, K Patir, B Das, P Saikia, S Brahma, B Basumatary, B Nath
    • Year: 2022
    • Citations: 63
  10. Biodiesel as renewable biofuel produced via enzyme-based catalyzed transesterification
    • Authors: P Kalita, B Basumatary, P Saikia, B Das, S Basumatary
    • Year: 2022
    • Citations: 61
  11. Non-conventional seed oils as potential feedstocks for future biodiesel industries: a brief review
    • Authors: S Basumatary
    • Year: 2013
    • Citations: 60

 

 

 

Ning Zhang | Thermoplastic Materials | Best Researcher Award

Prof. Ning Zhang | Thermoplastic Materials | Best Researcher Award

Professor at Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China.

Dr. Ning Zhang is a distinguished academic and researcher specializing in orthodontics at Capital Medical University, School of Stomatology in Beijing, PR China. He completed his PhD at Capital Medical University and pursued postdoctoral research at the University of Maryland School of Dentistry. Dr. Zhang currently serves as the Director of the Science and Technology Department at Capital Medical University. His research is prominently focused on the development of antibacterial, protein-repellent, and remineralization dental materials, as well as advancements in thermoplastic materials. With over 100 publications in esteemed journals, he has made significant contributions to the field of dental materials science.

Professional Profiles:

Education

Dr. Ning Zhang obtained his PhD at Capital Medical University, School of Dentistry, in 2011.

Professional Experience

He worked as a postdoctoral researcher at the University of Maryland School of Dentistry in 2013. Currently, he serves as a Professor in the Department of Orthodontics at Capital Medical University, School of Stomatology, Beijing, PR China. He also holds the position of Director of the Science and Technology Department at Capital Medical University, School of Stomatology.

Research Interests

Dr. Ning Zhang’s research interests include:

  • Antibacterial, protein-repellent, and remineralization dental materials
  • Thermoplastic materials

Publications

  • Biocompatible reduced graphene oxide stimulated BMSCs induce acceleration of bone remodeling and orthodontic tooth movement through promotion on osteoclastogenesis and angiogenesis.
    • Authors: Ning Zhang
    • Year: 2022
    • Journal: Bioactive materials
    • Citations: PMID: 35386350; PMC: PMC8958387; DOI: 10.1016/j.bioactmat.2022.01.021
  • Higher yield and enhanced therapeutic effects of exosomes derived from MSCs in hydrogel-assisted 3D culture system for bone regeneration.
    • Authors: Ning Zhang
    • Year: 2022
    • Journal: Materials science & engineering. C, Materials for biological applications
    • Citations: PMID: 35067433; DOI: 10.1016/j.msec.2022.112646
  • Human Periodontal Ligament Stem Cell and Umbilical Vein Endothelial Cell Co-Culture to Prevascularize Scaffolds for Angiogenic and Osteogenic Tissue Engineering.
    • Authors: Ning Zhang
    • Year: 2021
    • Journal: International journal of molecular sciences
    • Citations: PMID: 34830243; PMC: PMC8621970; DOI: 10.3390/ijms222212363
  • Novel nanostructured resin infiltrant containing calcium phosphate nanoparticles to prevent enamel white spot lesions.
    • Authors: Ning Zhang
    • Year: 2021
    • Journal: Journal of the mechanical behavior of biomedical materials
    • Citations: PMID: 34871957; DOI: 10.1016/j.jmbbm.2021.104990
  • Gelatin reduced Graphene Oxide Nanosheets as Kartogenin Nanocarrier Induces Rat ADSCs Chondrogenic Differentiation Combining with Autophagy Modification.
    • Authors: Ning Zhang
    • Year: 2021
    • Journal: Materials (Basel, Switzerland)
    • Citations: PMID: 33668133; PMC: PMC7956601; DOI: 10.3390/ma14051053
  • Human periodontal ligament stem cell seeding on calcium phosphate cement scaffold delivering metformin for bone tissue engineering.
    • Authors: Ning Zhang
    • Year: 2019
    • Journal: Journal of dentistry
    • Citations: PMID: 31678476; DOI: 10.1016/j.jdent.2019.103220
  • Novel Protein-Repellent and Antibacterial Resins and Cements to Inhibit Lesions and Protect Teeth.
    • Authors: Ning Zhang
    • Year: 2019
    • Journal: International Journal of Polymer Science
    • Citations: DOI: 10.1155/2019/5602904
  • Advanced smart biomaterials and constructs for hard tissue engineering and regeneration.
    • Authors: Ning Zhang
    • Year: 2018
    • Journal: Bone research
    • Citations: PMID: 30374416; PMC: PMC6196224; DOI: 10.1038/s41413-018-0032-9
  • Protein-repellent and antibacterial effects of a novel polymethyl methacrylate resin.
    • Authors: Ning Zhang
    • Year: 2018
    • Journal: Journal of dentistry
    • Citations: PMID: 30248381; DOI: 10.1016/j.jdent.2018.09.007
  • Effects of water-aging for 6 months on the durability of a novel antimicrobial and protein-repellent dental bonding agent.
    • Authors: Ning Zhang
    • Year: 2018
    • Journal: International journal of oral science
    • Citations: PMID: 29925870; PMC: PMC6010414; DOI: 10.1038/s41368-018-0019-9

 

 

Georgina Gregory | Chemistry and Materials Science | Best Researcher Award

Dr. Georgina Gregory | Chemistry and Materials Science | Best Researcher Award

Royal Society Dorothy Hodgkin Fellow at University of Oxford, United Kingdom.

Georgina L. Gregory is a renowned chemist and Royal Society Dorothy Hodgkin Research Fellow at the University of Oxford. She holds a PhD and MRes (Distinction) from the University of Bath and a first-class honours MSci from Imperial College London. Her career spans academia and industry, including roles at Wadham College, the Faraday Institute, and Crown Packaging Ltd. Georgina’s research focuses on sustainable chemical technologies and battery applications, particularly innovative polymers for energy storage. She has received numerous awards for her leadership and research excellence, highlighting her expertise in strategic planning, data analysis, and project management. Georgina continues to drive advancements in green chemistry, making significant contributions to her field. 🌿🔬🌟

Professional Profiles:

Education

Georgina L. Gregory holds a PhD and MRes (Distinction) in Chemistry from the Centre for Sustainable Chemical Technologies at the University of Bath, which she completed in 2017. She also earned a first-class honours MSci in Chemistry from Imperial College London in 2011. 🎓🌟

Professional Experience

Georgina Gregory’s professional journey is marked by significant roles in academia and industry. She currently serves as a Royal Society Dorothy Hodgkin Research Fellow at the University of Oxford’s Department of Chemistry since October 2022. Concurrently, she is a Junior Research Fellow in Inorganic Chemistry at Wadham College, Oxford, a position she has held since October 2020. Previously, she was a Senior Postdoctoral Research Associate on the SOLBAT project at the Faraday Institute (2020-2022) and a Postdoctoral Research Associate in the Chemistry Research Lab at Oxford (2018-2020). Her industry experience includes a role as a Scientist at Crown Packaging Ltd. (2017-2018) and a PhD Placement at Syngenta (2016). 🔬📊

Research Interest

Georgina Gregory’s research interests are centered around sustainable chemical technologies and battery applications. Her work focuses on the development of polymers for use in energy storage, particularly in batteries, and she is actively involved in exploring innovative materials and methodologies to improve battery performance and sustainability. She is passionate about contributing to advancements in green chemistry and the development of environmentally friendly chemical processes. 🌿🔋

Awards and Honors

Georgina has received numerous awards and honors throughout her career. Notably, she has been recognized by the University of Oxford with the Award for Excellence Scheme, both in salary increments and monetary awards in 2022 and 2023. She has also received the Recognition Award for Leadership at Oxford in 2021 and 2022. Her research presentations have garnered accolades, including the Best Talk Prize at the Recent Appointees in Polymer Science (RAPS) in 2022, and several poster prizes and talk awards from conferences and symposia during her academic tenure. 🏆🎖️

Research Skills

Georgina Gregory possesses a robust set of research skills, including strategic planning, innovation, and creativity in scientific research. She is proficient in data analysis and project planning, with strong quantitative skills and experience in audit reporting. Her analytical thinking and ability to manage interdisciplinary teams have been instrumental in her research endeavors, particularly in the development and application of polymers for battery technologies. Her expertise is further demonstrated by her numerous invited presentations, published patents, and successful mentorship of graduate and undergraduate students. 📊

Publications

  1. Switchable Catalysis Improves the Properties of CO2-Derived Polymers: Poly(cyclohexene carbonate-b-ε-decalactone-b-cyclohexene carbonate) Adhesives
    • Authors: GS Sulley, GL Gregory, TTD Chen, L Peña Carrodeguas, G Trott, CK Williams
    • Year: 2020
    • Citations: 195
  2. Polymers from sugars: cyclic monomer synthesis, ring-opening polymerisation, material properties and applications
    • Authors: GL Gregory, EM López-Vidal, A Buchard
    • Year: 2017
    • Citations: 137
  3. Sequence control from mixtures: switchable polymerization catalysis and future materials applications
    • Authors: AC Deacy, GL Gregory, GS Sulley, TTD Chen, CK Williams
    • Year: 2021
    • Citations: 129
  4. Polymers from Sugars and CO2: Synthesis and Polymerization of a d-Mannose-Based Cyclic Carbonate
    • Authors: GL Gregory, LM Jenisch, B Charles, G Kociok-Kohn, A Buchard
    • Year: 2016
    • Citations: 115
  5. 2020 roadmap on solid-state batteries
    • Authors: M Pasta, D Armstrong, ZL Brown, J Bu, MR Castell, P Chen, A Cocks, et al.
    • Year: 2020
    • Citations: 112
  6. Easy access to oxygenated block polymers via switchable catalysis
    • Authors: T Stößer, GS Sulley, GL Gregory, CK Williams
    • Year: 2019
    • Citations: 93
  7. Bio‐based and degradable block polyester pressure‐sensitive adhesives
    • Authors: TTD Chen, LP Carrodeguas, GS Sulley, GL Gregory, CK Williams
    • Year: 2020
    • Citations: 81
  8. Triblock polyester thermoplastic elastomers with semi-aromatic polymer end blocks by ring-opening copolymerization
    • Authors: GL Gregory, GS Sulley, LP Carrodeguas, TTD Chen, A Santmarti, CK Williams
    • Year: 2020
    • Citations: 81
  9. Synthesis of 5-to 8-membered cyclic carbonates from diols and CO2: A one-step, atmospheric pressure and ambient temperature procedure
    • Authors: TM McGuire, EM López-Vidal, GL Gregory, A Buchard
    • Year: 2018
    • Citations: 80
  10. Synthesis of 6-membered cyclic carbonates from 1,3-diols and low CO2 pressure: A novel mild strategy to replace phosgene reagents
    • Authors: GL Gregory, M Ulmann, A Buchard
    • Year: 2015
    • Citations: 78