Jay Singh | Chemistry and Materials Science | Research Excellence Award

Jay Singh | Chemistry and Materials Science | Research Excellence Award 

Thapar Institute of Engineering & Technology | India

Dr. Jay Singh is an Assistant Professor at the Thapar Institute of Engineering & Technology, India, with a strong research focus on advanced energy materials for sustainable electrochemical energy conversion and storage. His scholarly work lies at the intersection of energy storage systems, materials science, and water splitting technologies, addressing critical challenges associated with next-generation batteries and clean energy solutions. With a growing citation index of over 190 citations and 14 peer-reviewed journal publications indexed in reputed international databases, his research demonstrates both scientific depth and practical relevance. Dr. Singh’s primary contributions are centered on the design, synthesis, and electrochemical evaluation of advanced electrode materials for lithium-ion, sodium-ion, zinc-ion, and aluminium-ion batteries. He has developed nanostructured and doped transition metal oxides with precisely controlled morphologies to enhance ion diffusion kinetics, electrical conductivity, and long-term cycling stability. His materials engineering strategies have resulted in improved rate capability and electrochemical durability, contributing to the advancement of cost-effective and scalable battery chemistries suitable for large-scale energy storage applications. A distinguishing aspect of Dr. Singh’s research is his integration of machine learning and data-driven approaches into materials optimization, particularly for sodium-ion battery systems. By combining experimental electrochemistry with computational tools, he has accelerated materials screening and performance prediction, enabling efficient coin-cell development and deeper insights into charge storage mechanisms. This interdisciplinary methodology positions his work at the forefront of modern materials research, where artificial intelligence plays a key role in accelerating innovation. In addition to academic research, Dr. Singh has successfully completed consultancy and industry-oriented projects, reflecting his ability to translate fundamental research into practical technological solutions. He has established national and interdisciplinary collaborations, contributing to knowledge exchange and joint research outcomes in the field of sustainable energy materials. His research outputs have been disseminated through peer-reviewed publications and invited technical discussions, strengthening the global discourse on clean energy technologies. Overall, Dr. Jay Singh’s research profile reflects a strong commitment to advancing sustainable energy storage and conversion technologies, with impactful contributions that support the global transition toward renewable and environmentally responsible energy systems.

Citation Metrics (Google Scholar)

300
200
100
80
60
40
20
10
0

Citations
192
Documents
13

h-index
9

Citations

Documents

h-index

View Google Scholar Profile
   View Scopus Profile   View Orcid Profile

Featured Publications

Sanboh Lee | Chemistry and Materials Science | Excellence in Research Award

Prof. Sanboh Lee | Chemistry and Materials Science | Excellence in Research Award 

National Tsing Hua University | Taiwan

Professor Sanboh Lee is a highly distinguished scholar in materials science and engineering, internationally recognized for foundational and applied contributions spanning structural materials, polymers, electronic materials, and transport phenomena. His research career has been characterized by exceptional breadth and depth, integrating solid mechanics, materials physics, and microstructural science to address complex material behavior across multiple length scales. Professor Lee’s scientific work has significantly advanced the understanding of elastic interactions between defects and cracks, fracture mechanics, diffusion-induced and thermal stresses, and phase transformations in crystalline and composite materials. His studies on dislocation–crack interactions and elastic inclusions have provided fundamental insights into fracture resistance and toughening mechanisms, influencing the design of high-performance structural materials. In parallel, his research on ionic single crystals and polymer systems has clarified the relationships between mass transport, phase separation, optical behavior, and mechanical performance, with implications for both engineering plastics and functional materials. A major strength of Professor Lee’s research lies in its interdisciplinary scope. His investigations into hydrogen transport, magnetic and mechanical properties of steels, and texture evolution in low-carbon laminations have contributed to improved energy and power-related materials. He has also made important contributions to semiconductor materials, particularly amorphous and nanocrystalline silicon, supporting advances in electronic and device technologies. His work in micro- and nano-machining, nano-imprint technology, and nanostructured materials reflects a forward-looking engagement with emerging fabrication and manufacturing approaches. Professor Lee has further extended materials science principles into unconventional areas, including the mechanics and thermal aging of food materials, demonstrating the versatility and societal relevance of his research framework. His scholarship bridges theory, experimentation, and application, consistently emphasizing structure–property–performance relationships. With more than 280 peer-reviewed journal publications and over 150 invited and contributed presentations, Professor Lee’s work has achieved sustained international impact. His research excellence has been widely recognized through numerous prestigious honors, fellowships, and lifetime achievement awards from leading scientific societies worldwide. In addition, his long-standing service on editorial boards, award committees, and international advisory panels reflects a deep commitment to shaping the global materials science community. Overall, Professor Sanboh Lee’s research profile exemplifies scientific rigor, intellectual leadership, and lasting influence, contributing fundamentally to materials mechanics, functional materials development, and interdisciplinary materials engineering.

Citation Metrics (Scopus)

5000
4000
3000
2000
1000
  500
  400
  300
  200
  100
    50
    40
    30
    20
    10
      0

Citations
3819

Documents
237

h-index
29

Citations

Documents

h-index

View Scopus Profile
        View Orcid Profile

Featured Publications

Wanting Zhu | Materials Science | Best Researcher Award | 13543

Prof. Wanting Zhu | Materials Science | Best Researcher Award 

Prof. Wanting Zhu, Wuhan University of Technology (WUT), China

Prof. Wanting Zhu is a distinguished Professor of Materials Science and Engineering at the Wuhan University of Technology (WUT), where she conducts advanced research at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing. Her expertise lies in thermoelectric materials and device engineering, with a particular focus on artificially tilted-structure transverse thermoelectric devices. She has pioneered high-throughput screening methods and established key design principles for these systems across various application scenarios. With over ten SCI-indexed publications, including recent works in ACS Applied Materials & Interfaces and Journal of Power Sources, Prof. Zhu is a recognized leader in optimizing thermoelectric performance and device stability.

Author Profile

Scopus

Education

Prof. Wanting Zhu’s academic journey in materials science began with a strong inclination towards fundamental research and practical engineering applications. From the outset of her education, she demonstrated a profound interest in energy materials, particularly those that contribute to sustainable and efficient thermal-to-electric energy conversion. Her early academic training equipped her with a solid foundation in thermodynamics, solid-state physics, and electronic materials, laying the groundwork for what would become a career at the intersection of cutting-edge materials research and real-world technological applications. Her curiosity and drive for innovation during her formative academic years eventually led her to explore thermoelectric materials—an area both scientifically rich and highly relevant to global energy challenges.

Experience

Currently serving as a Professor of Materials Science and Engineering at the Wuhan University of Technology (WUT), Prof. Zhu is affiliated with the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing. In this role, she actively leads high-impact research focused on the design, fabrication, and optimization of thermoelectric devices, especially those with artificially tilted multilayer structures. She has emerged as a leading figure in her field, bridging theoretical insight and experimental prowess.

Her lab not only conducts fundamental research but also engages in the development of functional materials for real-world applications in electronics, energy harvesting, and thermal management systems. Prof. Zhu also plays a vital role in mentoring graduate students and postdoctoral researchers, fostering a collaborative and innovation-driven research environment. Her commitment to scientific advancement is evident in her hands-on leadership, guiding both applied research and long-term academic training.

Research Focus

She has made pioneering contributions in developing artificially tilted multilayer thermoelectric systems, which exhibit transverse thermoelectric effects. Her research elucidates both the structural design principles and manufacturing techniques necessary for tailoring these devices to specific energy and thermal environments. Prof. Zhu developed an innovative high-throughput screening method for optimizing the performance of thermoelectric devices, significantly accelerating materials discovery and device fabrication. This method enables rapid identification of effective material combinations and geometric configurations, increasing the efficiency of research and reducing production costs. She has also extended her research into materials with broadband infrared radiation capabilities, such as spinel ferrites, for thermal regulation in electronics—demonstrating the versatility and interdisciplinary reach of her work.

Her publications, appearing in Journal of Power Sources, ACS Applied Materials & Interfaces, and Ceramics International, are a testament to her deep expertise and forward-thinking approach.

Award and Recognition

Prof. Zhu has authored more than 10 SCI-indexed publications as a first or corresponding author, and her research has been widely cited in the fields of thermoelectricity and materials engineering. Her scientific contributions have positioned her as a thought leader in thermoelectric device design in China and internationally.

Her work has gained attention not just for its academic rigor but also for its potential applications in next-generation wearable electronics, energy harvesters, and electronic cooling systems. She is frequently invited to collaborate and review for leading journals, reflecting her growing influence and professional standing in the global research community.

Publications

📘Enhancing electrical properties of flexible BiSbTe/epoxy composite films via liquid-phase extrusion – Journal of power resources(2024).

📘Optimizing Room‐Temperature Thermoelectric and Magnetocaloric Performance via Constructing Multi‐Scale Interfacial Phases in LaFeSi/BiSbTe Thermo‐Electro‐Magnetic Refrigeration Materials – Advanced functional materials(2024).

📘Excellent thermoelectric performance of Fe2NbAl alloy induced by strong crystal anharmonicity and high band degeneracy – Quantum Materials(2024).