Wanting Zhu | Materials Science | Best Researcher Award | 13543

Prof. Wanting Zhu | Materials Science | Best Researcher Award 

Prof. Wanting Zhu, Wuhan University of Technology (WUT), China

Prof. Wanting Zhu is a distinguished Professor of Materials Science and Engineering at the Wuhan University of Technology (WUT), where she conducts advanced research at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing. Her expertise lies in thermoelectric materials and device engineering, with a particular focus on artificially tilted-structure transverse thermoelectric devices. She has pioneered high-throughput screening methods and established key design principles for these systems across various application scenarios. With over ten SCI-indexed publications, including recent works in ACS Applied Materials & Interfaces and Journal of Power Sources, Prof. Zhu is a recognized leader in optimizing thermoelectric performance and device stability.

Author Profile

Scopus

Education

Prof. Wanting Zhu’s academic journey in materials science began with a strong inclination towards fundamental research and practical engineering applications. From the outset of her education, she demonstrated a profound interest in energy materials, particularly those that contribute to sustainable and efficient thermal-to-electric energy conversion. Her early academic training equipped her with a solid foundation in thermodynamics, solid-state physics, and electronic materials, laying the groundwork for what would become a career at the intersection of cutting-edge materials research and real-world technological applications. Her curiosity and drive for innovation during her formative academic years eventually led her to explore thermoelectric materials—an area both scientifically rich and highly relevant to global energy challenges.

Experience

Currently serving as a Professor of Materials Science and Engineering at the Wuhan University of Technology (WUT), Prof. Zhu is affiliated with the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing. In this role, she actively leads high-impact research focused on the design, fabrication, and optimization of thermoelectric devices, especially those with artificially tilted multilayer structures. She has emerged as a leading figure in her field, bridging theoretical insight and experimental prowess.

Her lab not only conducts fundamental research but also engages in the development of functional materials for real-world applications in electronics, energy harvesting, and thermal management systems. Prof. Zhu also plays a vital role in mentoring graduate students and postdoctoral researchers, fostering a collaborative and innovation-driven research environment. Her commitment to scientific advancement is evident in her hands-on leadership, guiding both applied research and long-term academic training.

Research Focus

She has made pioneering contributions in developing artificially tilted multilayer thermoelectric systems, which exhibit transverse thermoelectric effects. Her research elucidates both the structural design principles and manufacturing techniques necessary for tailoring these devices to specific energy and thermal environments. Prof. Zhu developed an innovative high-throughput screening method for optimizing the performance of thermoelectric devices, significantly accelerating materials discovery and device fabrication. This method enables rapid identification of effective material combinations and geometric configurations, increasing the efficiency of research and reducing production costs. She has also extended her research into materials with broadband infrared radiation capabilities, such as spinel ferrites, for thermal regulation in electronics—demonstrating the versatility and interdisciplinary reach of her work.

Her publications, appearing in Journal of Power Sources, ACS Applied Materials & Interfaces, and Ceramics International, are a testament to her deep expertise and forward-thinking approach.

Award and Recognition

Prof. Zhu has authored more than 10 SCI-indexed publications as a first or corresponding author, and her research has been widely cited in the fields of thermoelectricity and materials engineering. Her scientific contributions have positioned her as a thought leader in thermoelectric device design in China and internationally.

Her work has gained attention not just for its academic rigor but also for its potential applications in next-generation wearable electronics, energy harvesters, and electronic cooling systems. She is frequently invited to collaborate and review for leading journals, reflecting her growing influence and professional standing in the global research community.

Publications

📘Enhancing electrical properties of flexible BiSbTe/epoxy composite films via liquid-phase extrusion – Journal of power resources(2024).

📘Optimizing Room‐Temperature Thermoelectric and Magnetocaloric Performance via Constructing Multi‐Scale Interfacial Phases in LaFeSi/BiSbTe Thermo‐Electro‐Magnetic Refrigeration Materials – Advanced functional materials(2024).

📘Excellent thermoelectric performance of Fe2NbAl alloy induced by strong crystal anharmonicity and high band degeneracy – Quantum Materials(2024).

 

 

 

 

 

Georgina Gregory | Chemistry and Materials Science | Best Researcher Award

Dr. Georgina Gregory | Chemistry and Materials Science | Best Researcher Award

Royal Society Dorothy Hodgkin Fellow at University of Oxford, United Kingdom.

Georgina L. Gregory is a renowned chemist and Royal Society Dorothy Hodgkin Research Fellow at the University of Oxford. She holds a PhD and MRes (Distinction) from the University of Bath and a first-class honours MSci from Imperial College London. Her career spans academia and industry, including roles at Wadham College, the Faraday Institute, and Crown Packaging Ltd. Georgina’s research focuses on sustainable chemical technologies and battery applications, particularly innovative polymers for energy storage. She has received numerous awards for her leadership and research excellence, highlighting her expertise in strategic planning, data analysis, and project management. Georgina continues to drive advancements in green chemistry, making significant contributions to her field. 🌿🔬🌟

Professional Profiles:

Education

Georgina L. Gregory holds a PhD and MRes (Distinction) in Chemistry from the Centre for Sustainable Chemical Technologies at the University of Bath, which she completed in 2017. She also earned a first-class honours MSci in Chemistry from Imperial College London in 2011. 🎓🌟

Professional Experience

Georgina Gregory’s professional journey is marked by significant roles in academia and industry. She currently serves as a Royal Society Dorothy Hodgkin Research Fellow at the University of Oxford’s Department of Chemistry since October 2022. Concurrently, she is a Junior Research Fellow in Inorganic Chemistry at Wadham College, Oxford, a position she has held since October 2020. Previously, she was a Senior Postdoctoral Research Associate on the SOLBAT project at the Faraday Institute (2020-2022) and a Postdoctoral Research Associate in the Chemistry Research Lab at Oxford (2018-2020). Her industry experience includes a role as a Scientist at Crown Packaging Ltd. (2017-2018) and a PhD Placement at Syngenta (2016). 🔬📊

Research Interest

Georgina Gregory’s research interests are centered around sustainable chemical technologies and battery applications. Her work focuses on the development of polymers for use in energy storage, particularly in batteries, and she is actively involved in exploring innovative materials and methodologies to improve battery performance and sustainability. She is passionate about contributing to advancements in green chemistry and the development of environmentally friendly chemical processes. 🌿🔋

Awards and Honors

Georgina has received numerous awards and honors throughout her career. Notably, she has been recognized by the University of Oxford with the Award for Excellence Scheme, both in salary increments and monetary awards in 2022 and 2023. She has also received the Recognition Award for Leadership at Oxford in 2021 and 2022. Her research presentations have garnered accolades, including the Best Talk Prize at the Recent Appointees in Polymer Science (RAPS) in 2022, and several poster prizes and talk awards from conferences and symposia during her academic tenure. 🏆🎖️

Research Skills

Georgina Gregory possesses a robust set of research skills, including strategic planning, innovation, and creativity in scientific research. She is proficient in data analysis and project planning, with strong quantitative skills and experience in audit reporting. Her analytical thinking and ability to manage interdisciplinary teams have been instrumental in her research endeavors, particularly in the development and application of polymers for battery technologies. Her expertise is further demonstrated by her numerous invited presentations, published patents, and successful mentorship of graduate and undergraduate students. 📊

Publications

  1. Switchable Catalysis Improves the Properties of CO2-Derived Polymers: Poly(cyclohexene carbonate-b-ε-decalactone-b-cyclohexene carbonate) Adhesives
    • Authors: GS Sulley, GL Gregory, TTD Chen, L Peña Carrodeguas, G Trott, CK Williams
    • Year: 2020
    • Citations: 195
  2. Polymers from sugars: cyclic monomer synthesis, ring-opening polymerisation, material properties and applications
    • Authors: GL Gregory, EM López-Vidal, A Buchard
    • Year: 2017
    • Citations: 137
  3. Sequence control from mixtures: switchable polymerization catalysis and future materials applications
    • Authors: AC Deacy, GL Gregory, GS Sulley, TTD Chen, CK Williams
    • Year: 2021
    • Citations: 129
  4. Polymers from Sugars and CO2: Synthesis and Polymerization of a d-Mannose-Based Cyclic Carbonate
    • Authors: GL Gregory, LM Jenisch, B Charles, G Kociok-Kohn, A Buchard
    • Year: 2016
    • Citations: 115
  5. 2020 roadmap on solid-state batteries
    • Authors: M Pasta, D Armstrong, ZL Brown, J Bu, MR Castell, P Chen, A Cocks, et al.
    • Year: 2020
    • Citations: 112
  6. Easy access to oxygenated block polymers via switchable catalysis
    • Authors: T Stößer, GS Sulley, GL Gregory, CK Williams
    • Year: 2019
    • Citations: 93
  7. Bio‐based and degradable block polyester pressure‐sensitive adhesives
    • Authors: TTD Chen, LP Carrodeguas, GS Sulley, GL Gregory, CK Williams
    • Year: 2020
    • Citations: 81
  8. Triblock polyester thermoplastic elastomers with semi-aromatic polymer end blocks by ring-opening copolymerization
    • Authors: GL Gregory, GS Sulley, LP Carrodeguas, TTD Chen, A Santmarti, CK Williams
    • Year: 2020
    • Citations: 81
  9. Synthesis of 5-to 8-membered cyclic carbonates from diols and CO2: A one-step, atmospheric pressure and ambient temperature procedure
    • Authors: TM McGuire, EM López-Vidal, GL Gregory, A Buchard
    • Year: 2018
    • Citations: 80
  10. Synthesis of 6-membered cyclic carbonates from 1,3-diols and low CO2 pressure: A novel mild strategy to replace phosgene reagents
    • Authors: GL Gregory, M Ulmann, A Buchard
    • Year: 2015
    • Citations: 78