Wanting Zhu | Materials Science | Best Researcher Award | 13543

Prof. Wanting Zhu | Materials Science | Best Researcher Award 

Prof. Wanting Zhu, Wuhan University of Technology (WUT), China

Prof. Wanting Zhu is a distinguished Professor of Materials Science and Engineering at the Wuhan University of Technology (WUT), where she conducts advanced research at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing. Her expertise lies in thermoelectric materials and device engineering, with a particular focus on artificially tilted-structure transverse thermoelectric devices. She has pioneered high-throughput screening methods and established key design principles for these systems across various application scenarios. With over ten SCI-indexed publications, including recent works in ACS Applied Materials & Interfaces and Journal of Power Sources, Prof. Zhu is a recognized leader in optimizing thermoelectric performance and device stability.

Author Profile

Scopus

Education

Prof. Wanting Zhu’s academic journey in materials science began with a strong inclination towards fundamental research and practical engineering applications. From the outset of her education, she demonstrated a profound interest in energy materials, particularly those that contribute to sustainable and efficient thermal-to-electric energy conversion. Her early academic training equipped her with a solid foundation in thermodynamics, solid-state physics, and electronic materials, laying the groundwork for what would become a career at the intersection of cutting-edge materials research and real-world technological applications. Her curiosity and drive for innovation during her formative academic years eventually led her to explore thermoelectric materials—an area both scientifically rich and highly relevant to global energy challenges.

Experience

Currently serving as a Professor of Materials Science and Engineering at the Wuhan University of Technology (WUT), Prof. Zhu is affiliated with the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing. In this role, she actively leads high-impact research focused on the design, fabrication, and optimization of thermoelectric devices, especially those with artificially tilted multilayer structures. She has emerged as a leading figure in her field, bridging theoretical insight and experimental prowess.

Her lab not only conducts fundamental research but also engages in the development of functional materials for real-world applications in electronics, energy harvesting, and thermal management systems. Prof. Zhu also plays a vital role in mentoring graduate students and postdoctoral researchers, fostering a collaborative and innovation-driven research environment. Her commitment to scientific advancement is evident in her hands-on leadership, guiding both applied research and long-term academic training.

Research Focus

She has made pioneering contributions in developing artificially tilted multilayer thermoelectric systems, which exhibit transverse thermoelectric effects. Her research elucidates both the structural design principles and manufacturing techniques necessary for tailoring these devices to specific energy and thermal environments. Prof. Zhu developed an innovative high-throughput screening method for optimizing the performance of thermoelectric devices, significantly accelerating materials discovery and device fabrication. This method enables rapid identification of effective material combinations and geometric configurations, increasing the efficiency of research and reducing production costs. She has also extended her research into materials with broadband infrared radiation capabilities, such as spinel ferrites, for thermal regulation in electronics—demonstrating the versatility and interdisciplinary reach of her work.

Her publications, appearing in Journal of Power Sources, ACS Applied Materials & Interfaces, and Ceramics International, are a testament to her deep expertise and forward-thinking approach.

Award and Recognition

Prof. Zhu has authored more than 10 SCI-indexed publications as a first or corresponding author, and her research has been widely cited in the fields of thermoelectricity and materials engineering. Her scientific contributions have positioned her as a thought leader in thermoelectric device design in China and internationally.

Her work has gained attention not just for its academic rigor but also for its potential applications in next-generation wearable electronics, energy harvesters, and electronic cooling systems. She is frequently invited to collaborate and review for leading journals, reflecting her growing influence and professional standing in the global research community.

Publications

📘Enhancing electrical properties of flexible BiSbTe/epoxy composite films via liquid-phase extrusion – Journal of power resources(2024).

📘Optimizing Room‐Temperature Thermoelectric and Magnetocaloric Performance via Constructing Multi‐Scale Interfacial Phases in LaFeSi/BiSbTe Thermo‐Electro‐Magnetic Refrigeration Materials – Advanced functional materials(2024).

📘Excellent thermoelectric performance of Fe2NbAl alloy induced by strong crystal anharmonicity and high band degeneracy – Quantum Materials(2024).

 

 

 

 

 

Long Huang | Materials Process Engineering | Best Academic Researcher Award | 13321

Dr. Long Huang | Materials Process Engineering | Best Academic Researcher Award

Dr. Long Huang, Nanchang Hangkong University, China

Dr. Huang Long is a Lecturer and Master Supervisor at the School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, China. He earned his Ph.D. from Northwestern Polytechnical University under Prof. Sun Zhichao. His research focuses on precise plastic forming of difficult-to-deform materials (e.g., titanium alloys), microstructure-property regulation, and residual stress control in aero-engine components. He previously worked at China Aero-Engine South Industry Co., Ltd., contributing to process innovations and high-performance component development. Dr. Huang has published over 30 academic papers and holds five invention patents.

Profile

Early Academic Pursuits ✨

Dr. Huang Long embarked on his academic journey with a strong foundation in materials science and engineering. He earned his Bachelor of Science degree in Material Forming and Control Engineering from East China Jiaotong University in 2010, where he cultivated his interest in advanced manufacturing and materials processing. His passion for materials engineering led him to pursue a Master’s degree at Chongqing University (2011-2014) under the mentorship of Prof. Wang Menghan. During this period, he honed his expertise in materials processing, focusing on innovative techniques for improving mechanical properties and manufacturing efficiency.

Taking his academic endeavors to the next level, Dr. Huang pursued a Ph.D. in Materials Processing Engineering at Northwestern Polytechnical University from 2018 to 2022. Under the guidance of Prof. Sun Zhichao, a National Leading Talent, he specialized in precise plastic forming, microstructure regulation, and heat treatment processes for high-performance aerospace materials. His doctoral research contributed significantly to the field, particularly in the forming and performance enhancement of titanium alloys, a critical material for aerospace applications.

Professional Endeavors 💼

Following the completion of his Master’s degree, Dr. Huang joined China Aero-Engine South Industry Co., Ltd. (AECC South) in 2014 as a Technical Engineer in the Engineering Technology Department. During his tenure at AECC South, he played a crucial role in process innovation, working extensively on novel plastic forming techniques for titanium alloys and superalloys used in aero-engine components. His work focused on improving microstructure-property relationships and optimizing heat treatment methods to enhance material performance and longevity.

After nearly four years of impactful industrial research and development, Dr. Huang transitioned into academia in July 2022. He joined Nanchang Hangkong University as a Lecturer at the School of Aeronautical Manufacturing Engineering, where he continues to engage in cutting-edge research while mentoring the next generation of engineers. As a Master Supervisor, he guides graduate students in advanced manufacturing techniques, ensuring they develop the skills necessary for the evolving aerospace industry.

Contributions and Research Focus 🌟

Dr. Huang’s research interests lie at the intersection of materials science, mechanical engineering, and aerospace technology. His work has significantly advanced the understanding of:

  1. Precise Plastic Forming: Developing innovative forming techniques for complex components made from difficult-to-deform materials like titanium alloys and superalloys.
  2. Microstructure Regulation and Performance Optimization: Investigating the influence of heat treatment and forging processes on material properties to enhance mechanical performance.
  3. Superplasticity in Lightweight Aerospace Alloys: Exploring how superplastic forming techniques can be leveraged for efficient manufacturing.
  4. Residual Stress and Deformation Control: Modeling and simulating the behavior of aero-engine components during heat treatment to minimize defects and residual stresses.

Dr. Huang has led multiple research projects, including those funded by the Jiangxi Provincial Natural Science Foundation, the Science and Technology on Light Alloy Processing Laboratory, and Nanchang Hangkong University. His work continues to push the boundaries of materials engineering, making significant strides in aerospace manufacturing.

Accolades and Recognition 🏆

Dr. Huang’s contributions to materials processing and aerospace engineering have earned him significant recognition in the scientific community. He has published over 30 peer-reviewed academic papers in reputable journals, showcasing his expertise in materials engineering. Additionally, he holds five authorized invention patents related to advanced forming techniques and heat treatment processes. His patents have practical applications in the aerospace industry, contributing to more efficient and cost-effective manufacturing processes.

Beyond publications and patents, Dr. Huang’s research has been acknowledged through prestigious funding grants and industry collaborations, cementing his reputation as a leading researcher in his field.

Publication Top Notes

Author: T., Ding, Tong, K., Wei, Ke, Y., Hou, Yong, L., Huang, Long, M., Lee, Myoung-gyu

Journal: Chinese Journal of Mechanical Engineering

Year: 2024

Author: Y., Wang, Yuhang, S., Luo, Shuanmou, X., Dong, Xiangjuan, Z., Tu, Zeli, J., Li, Jiajun

Journal: Suxing Gongcheng Xuebao/Journal of Plasticity Engineering, 

Year: 2024