Tianwei He | Chemistry and Materials Science | Best Researcher Award

Prof Dr. Tianwei He | Chemistry and Materials Science | Best Researcher Award 

Yunnan University | China

Dr. Tianwei He is an internationally recognized materials scientist and computational chemist whose research advances the rational discovery and design of next-generation electrocatalysts for sustainable energy and chemical transformations. He is currently an Associate Professor at the School of Materials and Energy, Yunnan University, China, where he leads cutting-edge research at the intersection of density functional theory (DFT), nanocatalysis, and machine learning. His academic training and professional trajectory span leading institutions in China, Australia, Germany, and Macau, reflecting a strong global research footprint. Dr. He obtained his PhD in Computational Materials Science from Queensland University of Technology (QUT), Australia, following earlier degrees in Materials Science and Engineering. He subsequently held postdoctoral and assistant researcher positions at the Fritz Haber Institute of the Max Planck Society (Germany), University of Macau, and Queensland University of Technology, working under renowned scholars including Prof. Karsten Reuter, Prof. Hui Pan, and Prof. Aijun Du. These experiences shaped his expertise in theoretical catalysis, surface science, and reaction mechanism modeling. His research focuses on the computational discovery of novel nanocatalysts for key electrochemical and photocatalytic reactions within the C, N, O, and H cycles, including HER, OER, ORR, nitrogen reduction, CO/CO₂ reduction, and selective hydrogenation. By constructing structure- and composition-sensitive models using DFT, NEB, and molecular dynamics, Dr. He provides atomic-level insights into active sites, scaling relationships, and reaction pathways. In recent years, he has integrated machine learning approaches to accelerate catalyst screening and performance prediction. Dr. He has authored and co-authored an extensive body of high-impact publications in premier journals such as Journal of the American Chemical Society, PNAS, Chem, Advanced Materials, Advanced Energy Materials, Chemical Society Reviews, ACS Catalysis, and Small. With an h-index of 38, over 4,900 citations, and multiple ESI Highly Cited and Hot Papers, his work is widely recognized for its originality and influence in the catalysis community. His studies on single-atom catalysts, heteronuclear dual-atom systems, high-entropy catalysts, and low-dimensional heterostructures have significantly advanced understanding of catalytic stability, selectivity, and efficiency. In addition to research, Dr. He actively contributes to the scientific community as an invited reviewer for leading journals and as a member of early-career editorial boards for Materials Today Energy, Battery Energy, and Journal of Electrochemistry. Through sustained excellence in research, mentorship, and international collaboration, Dr. Tianwei He continues to play a pivotal role in shaping the future of computational catalysis and sustainable energy materials.

Citation Metrics (Google Scholar)

6000
5000
4000
3000
2000
1000
500
400
300
200
100
50
0

Citations
5020

Documents
30

h-index
38

Citations

Documents

h-index

View Google Scholar Profile

Featured Publications

Prashant Singh | Materials Science | Distinguished Scientist Award

Prof. Dr. Prashant Singh | Materials Science | Distinguished Scientist Award

Atma Ram Sanatan Dharma College, University of Delhi | India

Prof. Prashant Singh is a distinguished chemist and academic leader currently serving in the Department of Chemistry at Atma Ram Sanatan Dharma College, University of Delhi. With a career spanning teaching, research, and academic administration, he has made significant contributions to the fields of coordination chemistry, photochemistry, and materials science, with a particular emphasis on developing innovative luminescent coordination compounds and exploring their photophysical and catalytic properties. Prof. Singh obtained his B.Sc. and M.Sc. degrees from the University of Delhi before pursuing a Ph.D. in Chemistry at the Indian Institute of Technology (IIT) Delhi. His doctoral research centered on the design and synthesis of metal complexes with potential applications in light-emitting materials and photochemical processes—laying the foundation for his enduring interest in functional coordination compounds. Throughout his academic journey, Prof. Singh has demonstrated excellence in both research and teaching. He has guided numerous undergraduate and postgraduate research projects and has been instrumental in promoting inquiry-based learning and laboratory innovation in chemistry education. His research work encompasses diverse areas, including the synthesis of Schiff base and polypyridyl ligands, transition metal complexes, fluorescence quenching studies, and the development of new materials with optoelectronic relevance. Prof. Singh has authored and co-authored several research papers in reputed international journals and presented his findings at various national and international conferences. He has also contributed to academic book chapters and served as a reviewer for multiple scientific journals. Beyond his research, he has been deeply involved in academic governance and community engagement. As President of the ANDC Alumni Association and a key member of multiple institutional committees, he has fostered strong alumni relations and advanced institutional growth through collaborative initiatives. A passionate educator, Prof. Singh has received accolades for his innovative pedagogical methods and dedication to student mentorship. His commitment to bridging theoretical chemistry with experimental practice has inspired many students to pursue higher studies and research careers in chemistry and related disciplines. In addition to his teaching and research, Prof. Singh actively contributes to science outreach and public engagement, encouraging interdisciplinary collaboration and sustainable scientific development. He continues to explore emerging areas such as green chemistry and materials for energy applications, aligning his research interests with global scientific priorities. Prof. Prashant Singh stands out as a scholar whose academic rigor, leadership, and service to education embody the highest ideals of the University of Delhi. His work continues to impact both the academic community and society, contributing to the advancement of chemical sciences and the nurturing of future generations of researchers.

Profiles: Scopus | Google Scholar

Featured Publications

H, W., Naghavi, M., Allen, C., Barber, R. M., Bhutta, Z. A., Carter, A., Casey, D. C., et al. (2016). Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: A systematic analysis for the Global Burden of Disease Study 2015. The Lancet, 388(10053), 1459–1544. https://doi.org/10.1016/S0140-6736(16)31012-1

Tyagi, S., Sharma, B., Singh, P., & Dobhal, R. (2013). Water quality assessment in terms of water quality index. American Journal of Water Resources, 1(3), 34–38. https://doi.org/10.12691/ajwr-1-3-3

Singh, R. P., Shukla, V. K., Yadav, R. S., Sharma, P. K., Singh, P. K., & Pandey, A. C. (2011). Biological approach of zinc oxide nanoparticles formation and its characterization. Advanced Materials Letters, 2(4), 313–317. https://doi.org/10.5185/amlett.2011.1216

Singh, R., Singh, Y., Xalaxo, S., Verulkar, S., Yadav, N., Singh, S., Singh, N., et al. (2016). From QTL to variety—Harnessing the benefits of QTLs for drought, flood and salt tolerance in mega rice varieties of India through a multi-institutional network. Plant Science, 242, 278–287. https://doi.org/10.1016/j.plantsci.2015.08.008

Rana, R. S., Singh, P., Kandari, V., Singh, R., Dobhal, R., & Gupta, S. (2017). A review on characterization and bioremediation of pharmaceutical industries’ wastewater: An Indian perspective. Applied Water Science, 7(1), 1–12. https://doi.org/10.1007/s13201-014-0225-3

Bhatt, D. L., Steg, P. G., Mehta, S. R., Leiter, L. A., Simon, T., Fox, K., Held, C., et al. (2019). Ticagrelor in patients with diabetes and stable coronary artery disease with a history of previous percutaneous coronary intervention (THEMIS-PCI): A phase 3, placebo-controlled trial. The Lancet, 394(10204), 1169–1180. https://doi.org/10.1016/S0140-6736(19)31887-2

Sridhara, S. R., DiRenzo, M., Lingam, S., Lee, S. J., Blazquez, R., Maxey, J., et al. (2011). Microwatt embedded processor platform for medical system-on-chip applications. IEEE Journal of Solid-State Circuits, 46(4), 721–730. https://doi.org/10.1109/JSSC.2011.2107290

Aggarwal, S., Negi, S., Jha, P., Singh, P. K., Stobdan, T., Pasha, M. A. Q., Ghosh, S., et al. (2010). EGLN1 involvement in high-altitude adaptation revealed through genetic analysis of extreme constitution types defined in Ayurveda. Proceedings of the National Academy of Sciences, 107(44), 18961–18966. https://doi.org/10.1073/pnas.1006108107

Weiguang Ran | Optical Materials | Best Researcher Award | 13659

Mr. Weiguang Ran | Optical Materials | Best Researcher Award

Qufu Normal University | China

Dr. Ran Weiguang is a distinguished young associate professor at the School of Chemistry and Chemical Engineering, Qufu Normal University, with a dynamic research agenda at the interface of inorganic functional materials and optoelectronic technology. Since joining Qufu Normal University in September 2019, Dr. Ran has made notable strides in teaching, research, and project leadership. His teaching portfolio spans courses such as Polymer Material Processing and Molding, Materials Chemistry, Physical Chemistry Experiment, and postgraduate-level literature analysis and industrial analytical technologies. In research, Dr. Ran’s interests are both deep and broad: he leads in the design and performance regulation of inorganic luminescent materials (including rare-earth and non-rare-earth phosphors), the development of LED lighting and display devices (narrow-band phosphors, efficient emitters), optical temperature sensing (ratiometric and near-infrared upconversion sensors), green synthesis and scale-up of organic small molecules, and wet electronic chemical materials—including applications in industrial wastewater treatment. Regarding scholarly output, Dr. Ran maintains a robust publication record. He has accumulated approximately 2233 citations by 1842 documents and achieved an h-index of 29. This reflects his strong influence across his work, especially as a relatively young researcher. Many of his publications appear in high-impact venues, contributing significantly to the fields of luminescent materials and optoelectronic devices. His portfolio demonstrates both depth—through targeted work on functional luminescent systems—and breadth—spanning synthesis, scale-up, device integration, and environmental applications. In the trajectory of his career, Dr. Ran Weiguang stands out for his balanced integration of fundamental materials science, device engineering, and applied environmental technologies. His ability to straddle multiple domains—optics, materials chemistry, environmental science—reflects maturity beyond his years. With substantial funding success, a growing citation footprint, and an expanding scope of research challenges ahead, Dr. Ran is well positioned to emerge as a leading international figure in functional materials and optoelectronics.

Profiles: ScopusOrcid

Featured Publications

Ran, W., Zhang, Z., Wang, F., Jiang, H., Shao, Y., Ma, X., Geng, J., & Yan, T. (2025). Theoretical and experimental investigation of BaY₂(MoO₄)₄:xSm³⁺ phosphors. Journal of Luminescence, 277, 120968.

Ran, W., Geng, J., Zhou, Z., Zhou, C., Wang, F., Zhao, M., & Yan, T. (2024). Narrow-band green phosphor RbK₂Na(Li₃SiO₄)₄:Eu²⁺ with excellent thermal stability and high efficiency for wide color gamut displays. Journal of Materials Chemistry C, 12(47), 19148–19155.

Zhang, Z., Ran, W., Wang, F., Jiang, H., & Yan, T. (2024). Enhancement of photoluminescence properties in Na⁺ doped K₂BaPO₄F:Sm³⁺ phosphors. Ceramics International, 50(3, Part B), 5614–5623.

Ran, W., Zhang, Z., Ma, X., Shao, Y., Wang, F., Jiang, H., Gong, W., Guan, K., & Yan, T. (2024). Small Stokes shift and high thermostability in Ce³⁺ doped K₂BaPO₄F phosphors. Materials Research Bulletin, 170, 112574.

Song, M., Zhou, W., Wang, J., Wang, M., Zhao, J., & Ran, W. (2024). Full color luminescence and high efficient optical thermometric performance of Eu³⁺ and Sm³⁺ in self-activated Na₂LuMg₂V₃O₁₂ garnet. Journal of Rare Earths. Advance online publication.

Ran, W., Zhang, Z., Ma, X., Sun, G., & Yan, T. (2023). A novel optical temperature sensor based on Boltzmann function in BiZn₂PO₆ phosphor. Journal of Luminescence, 255, 119562.