Qingshan Pan | Materials Science | Best Researcher Award

Dr. Qingshan Pan | Materials Science | Best Researcher Award 

Dr. Qingshan Pan | Jiangxi Science & Technology Normal University | China

Dr. Qingshan Pan, Professor at Jiangxi Science & Technology Normal University, is a distinguished researcher specializing in DNA nanomaterials, MOF nanozyme materials, and self-assembled nano/nanogel systems derived from traditional Chinese medicine components. His work focuses on developing antibacterial and anti-inflammatory nanomedicines, advanced wound dressings, and targeted tumor diagnostics and therapies. A recipient of funding from the National Natural Science Foundation of China and multiple provincial grants, Dr. Pan has authored over 20 SCI-indexed publications in leading journals such as Chemical Engineering Journal and ACS Applied Materials & Interfaces, contributing significantly to nanomedicine and precision therapeutics research.

Author Profile

Scopus

Education

Dr. Qingshan Pan’s academic journey began with a strong foundation in chemical engineering, earning his bachelor’s degree from the Department of Chemical Engineering and Technology, Central South University. His early studies nurtured a keen interest in material science, nanotechnology, and their biomedical applications. Driven by a passion for innovation, he pursued doctoral studies at the State Key Laboratory of Chemical Biology and Measurement, Hunan University, specializing in Analytical Chemistry, and graduated with his Ph.D. His doctoral training provided him with advanced expertise in nanoscale materials design, synthesis, and functionalization, particularly for healthcare applications. These formative years equipped him with a multidisciplinary skill set that integrates chemistry, biology, and materials science—an essential foundation for his later breakthroughs in nanomedicine.

Experience

Currently serving as a Professor at Jiangxi Science & Technology Normal University, Dr. Pan is actively involved in teaching, mentoring, and leading high-impact research projects. He has successfully secured funding from prestigious organizations, including the National Natural Science Foundation of China, the Jiangxi Province Outstanding Young Scholars Fund, the Jiangxi Province Natural Science Foundation, and the Education Department. Through these roles, he has developed innovative research programs that bridge fundamental nanoscience with real-world biomedical solutions. Beyond academia, Dr. Pan contributes to the growth of the scientific community by engaging in collaborations with other researchers, fostering interdisciplinary partnerships, and promoting the application of nanotechnology in medicine and healthcare.

Research Focus

Dr. Pan’s research portfolio is broad yet deeply specialized, encompassing DNA nanomaterials, metal–organic framework (MOF) nanozyme materials, and self-assembled nano/nanogel systems derived from traditional Chinese medicine components. These systems have been engineered for antibacterial and anti-inflammatory nanomedicines, advanced antibacterial dressings, and precision tumor diagnosis and therapy.

His innovative approach to combining traditional Chinese medicine with cutting-edge nanotechnology has led to the development of hybrid nanomaterials that exhibit unique bioactive properties, enhanced stability, and targeted delivery capabilities. By integrating DNA nanotechnology with MOF-based nanozymes, his work addresses key challenges in biomedical applications, such as targeted drug release, controlled therapeutic activity, and dual-function systems capable of both diagnosis and treatment. These contributions not only advance the frontiers of nanomedicine but also provide new strategies for combating bacterial infections, reducing inflammation, and improving cancer therapy outcomes.

Award and Recognition

Dr. Pan’s scientific achievements are reflected in his impressive publication record, with over 20 SCI-indexed papers in internationally renowned journals, including Chemical Engineering Journal and ACS Applied Materials & Interfaces. His work is recognized for its high citation value, innovative experimental design, and significant potential for translational application in clinical medicine. Receiving funding from multiple prestigious agencies underscores his reputation as a leading figure in nanomedicine research. His role as a principal investigator in national and provincial projects highlights his ability to conceive, lead, and execute complex research initiatives that meet rigorous scientific standards.

Impact and Influence

The impact of Dr. Pan’s research extends far beyond academic citations. His nanomedicine platforms have the potential to revolutionize how bacterial infections, inflammation, and tumors are diagnosed and treated. The antibacterial dressings developed in his lab could play a crucial role in preventing hospital-acquired infections and promoting faster wound healing. His tumor-targeted nanotherapies are paving the way for minimally invasive and highly specific cancer treatments, reducing side effects while improving efficacy. Furthermore, by integrating bioactive compounds from traditional Chinese medicine into modern nanocarriers, Dr. Pan is contributing to a new paradigm in personalized and culturally rooted healthcare innovation.

Publications 

Transition Metal Sulfide-Based Nanozymes: From Design Strategies to Applications in Chronic Wound Healing

Author: Yuying Zhang, Renxi Li, XianXi Li, Pengwu Zheng, Wufu Zhu, Cunpeng Nie, Qingshan Pan
Journal: ACS Applied Nano Materials
Year: 2025

Review of Metal-Polyphenol Self-Assembled Nanoparticles: Synthesis, Properties, and Biological Applications in Inflammatory Diseases.

Author: Li Wan, Shizhe Li, Jiawei Du, Anqi Li, Yujie Zhan, Wufu Zhu, Pengwu Zheng, Dan Qiao, Cunpeng Nie, Qingshan Pan
Journal: ACS Biomaterials Science & Engineering
Year: 2025

Photothermally Enhanced Cascaded Nanozyme-Functionalized Black Phosphorus Nanosheets for Targeted Treatment of Infected Diabetic Wounds.

Author: Chunping Wen, Yan Zhang, Luogen Lai, Xuan Zhang, Yijun Liu, Qiuyan Guo, Rujue Peng, Yating Gao, Xufei Zhang, Yan He, Shan Xu, Dan Qiao, Pengwu Zheng, Qingshan Pan, Wufu Zhu
Journal: Advanced Healthcare Materials
Year: 2025

Conclusion

Dr. Qingshan Pan’s remarkable journey from his foundational studies in chemical engineering to his pioneering research in analytical chemistry and nanomedicine reflects a career marked by curiosity, dedication, and innovation. His expertise in designing DNA nanomaterials, MOF nanozyme platforms, and self-assembled nanogels bridges the gap between advanced material science and practical biomedical applications, addressing critical challenges in antibacterial, anti-inflammatory, and tumor-targeted therapies. Through his leadership in prestigious national and provincial research projects, his extensive scholarly publications, and his commitment to translating research into impactful solutions, Dr. Pan has firmly established himself as a trailblazer in interdisciplinary science. His work not only elevates the academic standing of Jiangxi Science & Technology Normal University but also contributes meaningfully to global advancements in nanotechnology and precision medicine. As his career progresses, Dr. Pan is poised to expand his influence, inspiring future scientists while continuing to innovate at the intersection of chemistry, biology, and medicine.

Zhigang Yu | Alloys Design | Best Researcher Award | 13361

Assoc. Prof. Dr. Zhigang Yu | Alloys Design | Best Researcher Award

Assoc. Prof. Dr. Zhigang Yu, Shanghai University, China

Assoc. Prof. Dr. Zhigang Yu is a faculty member at Shanghai University, China, specializing in thermodynamics and design of magnesium alloys through multi-scale computational methods and machine learning. He earned his Ph.D. in 2019 from Shanghai University and currently serves as an Associate Professor in the School of Materials Science and Engineering. Dr. Yu has published extensively in high-impact journals such as Journal of Materials Science & Technology and J. Chem. Theory Comput., and is a corresponding author on several pioneering works. He is a recipient of the prestigious Shanghai Oriental Talents Program (2023) and serves on the Youth Committee of the Journal of Materials Informatics. His contributions to the field have been recognized through awards and invitations as a speaker and conference chair in prominent materials science forums.

Profile

Orcid

🎓 Early Academic Pursuits

From the very beginning of his academic journey, Dr. Zhigang Yu demonstrated an exceptional passion for materials science and engineering. Born in 1989 in China, he pursued his undergraduate studies at Yantai University, earning a Bachelor of Science in 2012. His early exposure to materials and mechanical processes sparked a deep curiosity that led him to pursue higher education at Shanghai University, one of China’s leading research institutions.

At Shanghai University, he obtained his Master of Arts in 2015, followed by a Ph.D. in 2019, focusing on thermodynamics and alloy behavior. Throughout his academic development, Dr. Yu showed consistent dedication, a thirst for scientific exploration, and an ability to connect theoretical knowledge with practical application. His academic performance and research aptitude set a strong foundation for what would become a promising and impactful career in research and innovation.

💼 Professional Endeavors

Dr. Yu’s professional trajectory is marked by steady growth and consistent excellence. After completing his doctorate, he joined Shanghai University as a Postdoctoral Research Fellow from January 2020 to September 2022. This period allowed him to deepen his research in material thermodynamics and begin independent investigations, particularly in computational alloy modeling.

In October 2022, he was appointed as an Associate Professor at the university, a role that recognizes his academic maturity and leadership potential. As a teacher and mentor, Dr. Yu plays a vital role in training the next generation of engineers and materials scientists while advancing his own research on magnesium alloy design and artificial intelligence integration.

🔬 Contributions and Research Focus

Dr. Yu’s research sits at the intersection of traditional metallurgy and modern computational science. His primary research areas include:

  • Thermodynamics of Magnesium Alloys 🔩

  • Multi-scale Calculation Methods 🧮

  • Machine Learning-Assisted Alloy Design 🤖

He applies cutting-edge multi-scale modeling techniques to predict the thermodynamic behavior of magnesium alloys, making them more lightweight, efficient, and suitable for industrial applications such as aerospace, automotive, and electronics. Additionally, Dr. Yu’s work in applying machine learning algorithms to materials design is revolutionary, contributing significantly to the growing field of materials informatics.

He has published extensively, with over 10 high-impact journal articles, many as first or corresponding author, in esteemed journals such as Journal of Materials Science & Technology, J. Chem. Theory Comput., Materials & Design, and Ceramics International.

🏆 Accolades and Recognition

Dr. Yu’s work has not gone unnoticed. Over the years, he has received numerous prestigious awards and honors, including:

  • 🥇 Best Paper in Magnesium Alloy Section at the 4th International Conference of Non-Ferrous Materials (2024)

  • 🧠 Awardee of the Shanghai Oriental Talents Program (2023), a significant recognition for promising young scientists

  • 🎤 Invited Speaker at the 8th Asian Conference on Materials and Data (2024)

  • 📘 Youth Committee Member, Journal of Materials Informatics (2025–2026)

  • 🎓 Conference Chair, 6th National Hydrogen Energy Doctoral Academic Forum (2017)

These recognitions reflect both the scientific merit of his work and his leadership within the academic community.

🌍 Impact and Influence

Dr. Zhigang Yu’s research has a far-reaching impact on both academic and industrial fields. His pioneering efforts in alloy design and modeling contribute directly to the development of sustainable and high-performance materials. Through his work, industries can develop lighter and stronger alloys, leading to improved fuel efficiency and environmental sustainability.

As a mentor, Dr. Yu is deeply involved in guiding students, fostering interdisciplinary thinking, and promoting scientific excellence. His research collaborations and publications influence peers globally, making him a recognized voice in the field of materials science.

🌟 Legacy and Future Contributions

Looking ahead, Assoc. Prof. Dr. Zhigang Yu is well-positioned to become a leading figure in the integration of artificial intelligence with materials science. His ability to blend classical metallurgical concepts with modern computation and machine learning gives him a unique edge in shaping the future of smart materials and sustainable technologies.

He aims to further expand his research by building interdisciplinary collaborations, participating in international research consortia, and mentoring young scholars to carry forward the torch of scientific discovery. His commitment to innovation, education, and societal benefit ensures a lasting legacy within and beyond the academic community.

Publication Top Notes

Contributors: Zhigang Yu; Yu Li; Shuai Jiang; Lei Shi; Jun Luan; Hongqiang Fan; Yunying Fan; Kuochih Chou
Journal: Alloys and Compounds
Year: 2025
ContributorsPengcheng Cai; Jiaheng Liu; Jun Luan; Junwei Chen; Jianhua Chen; Xionggang Lu; Zhigang Yu; Kuochih Chou
Journal: Materials Science & Technology
Year: 2025

VASE: A High-Entropy Alloy Short-Range Order Structural Descriptor for Machine Learning

ContributorsJiaheng Liu; Pengbo Wang; Jun Luan; Junwei Chen; Pengcheng Cai; Jianhua Chen; Xionggang Lu; Yunying Fan; Zhigang Yu; Kuochih Chou
Journal: Chemical Theory and Computation
Year: 2024