Lei Xia | Chemistry and Materials Science | Research Excellence Award

Assoc Prof Dr. Lei Xia | Chemistry and Materials Science | Research Excellence Award

University of Science & Technology Liaoning | China

Dr. Lei Xia is an accomplished materials scientist and associate professor at the University of Science & Technology Liaoning, specializing in materials processing, tribology, corrosion protection, and computational simulation. He holds a PhD in Applied Chemistry from the Research Institute of Petroleum Processing, a Master’s degree in Materials Forming and Control Engineering from the University of Science and Technology Beijing, and a Bachelor’s degree from Yanshan University. Since joining USTL as a lecturer in 2019 and becoming associate professor in 2024, Dr. Xia has developed a strong research portfolio integrating experimental, theoretical, and simulation-based approaches to improve metal processing technologies. His major research areas include tribology and lubrication mechanisms in rolling processes, microstructure–property relationships in metallic materials, corrosion behavior and protective coatings, and molecular-level insights into lubricant oxidation and surface interactions using MD and QM simulations. Dr. Xia has completed and contributed to multiple national and enterprise-supported research projects, focusing on the improvement of steel, aluminum, and copper alloy processing performance. His scholarly contributions exceed 40 publications in high-impact SCI and EI journals, such as Lubricants, Metals, Materials Research Express, Tribology Letters, Rare Metal Materials and Engineering, and China Petroleum Processing & Petrochemical Technology. Many of his works investigate fatigue properties, lubricant chemistry, tribological behaviors, corrosion mechanisms, and the influence of process parameters on material performance. He has published two patents and numerous articles as corresponding or first author, demonstrating his leadership in research innovation. Dr. Xia’s contributions extend to several industrial collaborations with major enterprises such as Anshan Iron and Steel Group, Baowu Group, and Sinopec, where his work has directly supported advancements in rolling technology and surface quality control. His recognition includes selection for the prestigious Liaoning “Baiqianwan Talent Program” and the “Steel Capital Talent Plan.” Alongside his research, he serves on the youth editorial boards of multiple journals including Journal of Iron and Steel Research, Rolling Steel, Special Steel, Mechanical Engineering Newsletter, and Journal of Materials and Metallurgy. He is also an active member of professional societies such as the Chinese Mechanical Engineering Society, Chinese Materials Research Society, Chinese Chemical Society, and the China Nonferrous Metals Industry Association. Through interdisciplinary expertise, impactful publications, industrial collaborations, and major talent awards, Dr. Xia has made significant contributions to tribology, corrosion protection, and advanced materials processing, strengthening both academic research and industrial innovation.

Profile: Google Scholar

Featured Publications

Xia, L., Ma, Z., Kokogiannakis, G., Wang, Z., & Wang, S. (2018). A model-based design optimization strategy for ground source heat pump systems with integrated photovoltaic thermal collectors. Applied Energy, 214, 178–190. https://doi.org/10.1016/j.apenergy.2018.02.024

Ma, Z., Xia, L., Gong, X., Kokogiannakis, G., Wang, S., & Zhou, X. (2020). Recent advances and development in optimal design and control of ground source heat pump systems. Renewable and Sustainable Energy Reviews, 131, 110001. https://doi.org/10.1016/j.rser.2020.110001

Duong, H. C., Xia, L., Ma, Z., Cooper, P., Ela, W., & Nghiem, L. D. (2017). Assessing the performance of solar thermal driven membrane distillation for seawater desalination by computer simulation. Journal of Membrane Science, 542, 133–142. https://doi.org/10.1016/j.memsci.2017.08.019

Xia, L., Ma, Z., Kokogiannakis, G., Wang, S., & Gong, X. (2018). A model-based optimal control strategy for ground source heat pump systems with integrated solar photovoltaic thermal collectors. Applied Energy, 228, 1399–1412. https://doi.org/10.1016/j.apenergy.2018.06.017

Chen, J., Xia, L., Li, B., & Mmereki, D. (2015). Simulation and experimental analysis of optimal buried depth of the vertical U-tube ground heat exchanger for a ground-coupled heat pump system. Renewable Energy, 73, 46–54. https://doi.org/10.1016/j.renene.2014.06.055

Qi, D., Pu, L., Ma, Z., Xia, L., & Li, Y. (2019). Effects of ground heat exchangers with different connection configurations on the heating performance of GSHP systems. Geothermics, 80, 20–30. https://doi.org/10.1016/j.geothermics.2019.01.006

Xia, L., Ma, Z., McLauchlan, C., & Wang, S. (2017). Experimental investigation and control optimization of a ground source heat pump system. Applied Thermal Engineering, 127, 70–80. https://doi.org/10.1016/j.applthermaleng.2017.07.111

Gong, X., Xia, L., Ma, Z., Chen, G., & Wei, L. (2018). Investigation on the optimal cooling tower input capacity of a cooling tower assisted ground source heat pump system. Energy and Buildings, 174, 239–253. https://doi.org/10.1016/j.enbuild.2018.06.021

Bramhaiah Kommula | Materials Science | Best Researcher Award

Assist Prof Dr. Bramhaiah Kommula | Materials Science | Best Researcher Award

Assist Prof Dr. Bramhaiah Kommula | St. Joseph’s University Bangalore | India

Dr. Bramhaiah Kommula is an accomplished researcher and academic currently serving as an Assistant Professor in the Department of Chemistry at St. Joseph’s University, Bengaluru. His research embodies a multidisciplinary approach at the intersection of nanomaterials, photochemistry, and sustainable energy, with a focus on developing advanced functional luminescent nanomaterials for energy conversion, storage, and environmental remediation. Dr. Kommula earned his Ph.D. in Chemistry from Mangalore University in 2018 under the supervision of Dr. Neena S. John at the Centre for Nano and Soft Matter Sciences (CeNS), Bengaluru, where he investigated the “Synthesis and Properties of Graphene-Based Hybrid Materials Employing Chemical Routes.” Following his doctoral studies, Dr. Kommula pursued postdoctoral research at prestigious institutes including IISER Berhampur (2019–2022) with Dr. Santanu Bhattacharyya and IISER Mohali (2022–2024) with Prof. Ujjal K. Gautam. His postdoctoral work focused on the design and engineering of carbon-based nanostructures and their photocatalytic applications in solar fuel generation, hydrogen evolution, and selective organic transformations. He also contributed to the development of metal-free, waste-derived carbon dots and explored their photophysical properties for green hydrogen production, CO₂ reduction, and photoinduced organic catalysis. Dr. Kommula’s current research at St. Joseph’s University integrates nanomaterial synthesis, photophysical studies, and energy applications, emphasizing sustainable approaches to convert plastic waste into high-value carbon dots (CDs) and utilize them as efficient metal-free photocatalysts. Dr. Kommula has also authored several book chapters published by Springer Nature and holds a provisional Indian patent on graphitic carbon dots. Dr. Kommula’s research excellence has been acknowledged through several prestigious fellowships, including Institute Postdoctoral Fellowships from IISER Mohali and IISER Berhampur, and DST Senior and Junior Research Fellowships. His scientific leadership is evident in his ongoing supervision of three Ph.D. students and his submission of major national funding proposals under ANRF and DST schemes aimed at developing sustainable photocatalytic systems for hydrogen and value-added chemical production. Overall, Dr. Bramhaiah Kommula’s research exemplifies innovation-driven science that bridges materials chemistry and renewable energy technologies. His long-term goal is to pioneer eco-friendly nanomaterials that transform environmental waste into useful resources, contributing significantly toward achieving sustainable energy solutions and carbon-neutral technologies for the future.

Profiles: Orcid | Google Scholar

Featured Publications

Kommula, B., & Sriramadasu, V. K. (2025). Room temperature red phosphorescence enabled by alkali treatment in niobium carbide-derived carbon dots. Journal of Luminescence, 274, 121591. https://doi.org/10.1016/j.jlumin.2025.121591

Roy, R. S., Sil, S., Mishra, S., Banoo, M., Swarnkar, A., Kommula, B., De, A. K., & Gautam, U. K. (2025). Layer width engineering in carbon nitride for enhanced exciton dissociation and solar fuel generation. ACS Materials Letters, 7(4), 1385–1393.

Mandal, R., Biswal, J. R., Kommula, B., & Bhattacharyya, S. (2025). 2,2′:5′,2″:5″,2‴‐Quaterthiophene nanoparticles and single-walled CNT composite: An organic nanohybrid for solar H₂ production and simultaneous photoreformation of plastic wastes. ChemCatChem, 17(3), e202500307.

Kommula, B., & Gautam, U. K. (2025). A two-step strategy for residue-free chemical conversion of plastic waste to carbon dots: Upscaling and solvent recycling prospects. Carbon, 234, 119960.

Dutta, B., Kommula, B., Kanwar, K., Gautam, U. K., & Sarma, D. (2025). Oxygen-harvesting carbon dot photocatalysts for ambient tandem oxidative synthesis of quinazolin-4(3H)-ones. Green Chemistry, 27(1), Article D5GC00962F.

Kommula, B., Kanwar, K., & Gautam, U. K. (2024). Waste polyethylene-derived carbon dots: Administration of metal-free oxidizing agents for tunable properties and photocatalytic hyperactivity. ACS Applied Materials & Interfaces, 16(31), 39470–39481.

Weiguang Ran | Optical Materials | Best Researcher Award | 13659

Mr. Weiguang Ran | Optical Materials | Best Researcher Award

Qufu Normal University | China

Dr. Ran Weiguang is a distinguished young associate professor at the School of Chemistry and Chemical Engineering, Qufu Normal University, with a dynamic research agenda at the interface of inorganic functional materials and optoelectronic technology. Since joining Qufu Normal University in September 2019, Dr. Ran has made notable strides in teaching, research, and project leadership. His teaching portfolio spans courses such as Polymer Material Processing and Molding, Materials Chemistry, Physical Chemistry Experiment, and postgraduate-level literature analysis and industrial analytical technologies. In research, Dr. Ran’s interests are both deep and broad: he leads in the design and performance regulation of inorganic luminescent materials (including rare-earth and non-rare-earth phosphors), the development of LED lighting and display devices (narrow-band phosphors, efficient emitters), optical temperature sensing (ratiometric and near-infrared upconversion sensors), green synthesis and scale-up of organic small molecules, and wet electronic chemical materials—including applications in industrial wastewater treatment. Regarding scholarly output, Dr. Ran maintains a robust publication record. He has accumulated approximately 2233 citations by 1842 documents and achieved an h-index of 29. This reflects his strong influence across his work, especially as a relatively young researcher. Many of his publications appear in high-impact venues, contributing significantly to the fields of luminescent materials and optoelectronic devices. His portfolio demonstrates both depth—through targeted work on functional luminescent systems—and breadth—spanning synthesis, scale-up, device integration, and environmental applications. In the trajectory of his career, Dr. Ran Weiguang stands out for his balanced integration of fundamental materials science, device engineering, and applied environmental technologies. His ability to straddle multiple domains—optics, materials chemistry, environmental science—reflects maturity beyond his years. With substantial funding success, a growing citation footprint, and an expanding scope of research challenges ahead, Dr. Ran is well positioned to emerge as a leading international figure in functional materials and optoelectronics.

Profiles: ScopusOrcid

Featured Publications

Ran, W., Zhang, Z., Wang, F., Jiang, H., Shao, Y., Ma, X., Geng, J., & Yan, T. (2025). Theoretical and experimental investigation of BaY₂(MoO₄)₄:xSm³⁺ phosphors. Journal of Luminescence, 277, 120968.

Ran, W., Geng, J., Zhou, Z., Zhou, C., Wang, F., Zhao, M., & Yan, T. (2024). Narrow-band green phosphor RbK₂Na(Li₃SiO₄)₄:Eu²⁺ with excellent thermal stability and high efficiency for wide color gamut displays. Journal of Materials Chemistry C, 12(47), 19148–19155.

Zhang, Z., Ran, W., Wang, F., Jiang, H., & Yan, T. (2024). Enhancement of photoluminescence properties in Na⁺ doped K₂BaPO₄F:Sm³⁺ phosphors. Ceramics International, 50(3, Part B), 5614–5623.

Ran, W., Zhang, Z., Ma, X., Shao, Y., Wang, F., Jiang, H., Gong, W., Guan, K., & Yan, T. (2024). Small Stokes shift and high thermostability in Ce³⁺ doped K₂BaPO₄F phosphors. Materials Research Bulletin, 170, 112574.

Song, M., Zhou, W., Wang, J., Wang, M., Zhao, J., & Ran, W. (2024). Full color luminescence and high efficient optical thermometric performance of Eu³⁺ and Sm³⁺ in self-activated Na₂LuMg₂V₃O₁₂ garnet. Journal of Rare Earths. Advance online publication.

Ran, W., Zhang, Z., Ma, X., Sun, G., & Yan, T. (2023). A novel optical temperature sensor based on Boltzmann function in BiZn₂PO₆ phosphor. Journal of Luminescence, 255, 119562.