Kawther Meliani | Materials Science | Best Researcher Award | 13650

Mrs. Kawther Meliani | Materials Science | Best Researcher Award 

Laboratory of Physics of Experimental Techniques and its Applications | Algeria

Dr. Kawther Meliani is a dedicated researcher and Ph.D. candidate in Material Physics at the University of Medea, Algeria, affiliated with the Laboratory of Physics of Experimental Techniques and its Applications. Her core research focuses on Heusler alloys — specifically their structural, magnetic, electronic, and thermoelectric properties — which have wide-ranging applications in spintronics and energy conversion technologies. She utilizes a multidisciplinary approach, combining Density Functional Theory (DFT) simulations using tools like WIEN2k, Quantum ESPRESSO, and CASTEP with experimental synthesis and characterization techniques to validate theoretical models and accelerate materials discovery. Dr. Meliani has published three research papers in reputable SCI and Scopus-indexed journals, including Journal of Alloys and Compounds (Elsevier), Physica B: Condensed Matter, and the Brazilian Journal of Physics. Her publications have collectively received 9 citations, and she currently holds an h-index of 2, demonstrating early-career research impact and growing academic visibility. In addition to her publication record, she has participated in international conferences and research training, including a self-financed one-month collaboration at the University of Girona in Spain, and is preparing for further collaboration at Tohoku University in Japan. Dr. Meliani has made significant contributions to understanding the stability and electronic structure of full and half-metallic Heusler compounds, which are essential for developing next-generation spintronic devices and thermoelectric generators. Her work supports the design of functional materials with high performance and sustainability, aligned with global scientific priorities. Beyond her research, she is actively engaged in undergraduate teaching, fostering scientific curiosity and technical competence in physics students. With her commitment to innovation, cross-border collaboration, and academic rigor, Dr. Kawther Meliani represents a promising and impactful figure in the field of material physics. Her integration of theoretical modeling with hands-on experimentation sets her apart as a researcher who bridges scientific theory and real-world applications. She is a highly deserving candidate for the Best Researcher Award in recognition of her contributions and continued potential for scientific excellence.

Profiles: Scopus | Orcid | Google Scholar

Featured Publications

Meliani, K., Haireche, S., Bouchenafa, M., Elbaa, M., Douakh, S., & Chiker, R. (2024). Comprehensive analysis of the structural, electronic, elastic, and optical properties of SrS compound under pressure: First-principles calculations. Brazilian Journal of Physics, 54(2), 46.

Meliani, K., Dehbaoui, M., Djennane, K., & Dehimi, N. E. H. (2024). Pressure effect investigation of structural, electronic, elastic and magnetic properties of X₂CrSb (X = Mn, Co and Cu) Heusler alloys. Physica B: Condensed Matter, 694, 416442.

Haireche, S., Douakh, S., Elbaa, M., Bouchenafa, M., & Meliani, K. (2025). Influence of phase transition on the mechanical and optical properties of SrSe and SrTe compounds via ab initio calculations. Physica B: Condensed Matter, 696, 416610.

Dehimi, N. E. H., Mourad, D., Meliani, K., Djennane, K., Benaisti, I., & Ozdogan, K. (2025). Unveiling the pressure-induced properties and ambient thermoelectric behaviour of Co₂YZ (Z = Si, Ge, Sn) Heusler alloys. Physica Scripta. (In press)

Meliani, K., Dehbaoui, M., Sarhani, M. E. S., Benalia, A., Djennane, K., & others. (2025). Unveiling the antiferromagnetic Co₂−ₓFeₓCrSn (x = 0, 0.5, 1) hexagonal quaternary Heusler alloys: Experimental and theoretical study. Journal of Alloys and Compounds, In press, 183537.

Khaoula, D., Mourad, D., Elhouda, D. N., & Kawther, M. (2025). HfZFe candidate 2 (Z = Si, Ge, Sn), promising new materials for electronic and thermoelectric applications. In Proceedings of the 2nd International Conference of Nanotechnology for Renewable Energy (ICNRE).

Jianping Zeng | Chemistry | Best Academic Researcher Award | 13376

Mr. Jianping Zeng | Chemistry | Best Academic Researcher Award

Mr. Jianping Zeng, Yancheng Institute of Technology, China

Mr. Jianping Zeng is an Associate Professor in the Department of Applied Chemistry at the School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Jiangsu Province, China. He holds a Ph.D. in Materials Science and Engineering from Nanjing University of Science and Technology. His research focuses on first-principles and molecular dynamics simulations, particularly the interactions between solutions and crystals. He has published several papers in leading journals such as Electrochimica Acta and Journal of Molecular Liquids. He was also a visiting scholar at the Australian National University from 2018 to 2019.

Profile

Scopus

🎓 Early Academic Pursuits

Jianping Zeng began his academic journey with a solid foundation in chemical education. He completed his junior college degree in Chemical Education at the East China University of Technology in 1999. Recognizing his keen interest in the fundamentals of chemical interactions and materials behavior, he pursued a Master’s degree in Physical Chemistry at the prestigious Nanjing University of Science and Technology, graduating in 2004. His deepening curiosity and academic excellence led him to undertake doctoral studies in Materials Science and Engineering at the same institution. He earned his Ph.D. in 2013, setting the stage for a dynamic academic and research career. These formative years equipped him with a blend of theoretical insight and practical laboratory skills, laying the groundwork for his future innovations in molecular simulation and material interaction research.

🧑‍🏫 Professional Endeavors

After earning his Ph.D., Mr. Zeng joined the Department of Applied Chemistry at the Yancheng Institute of Technology in Jiangsu Province. He began his professional teaching career as a Lecturer in 2005. His dedication to both teaching and research was quickly recognized, and by August 2011, he was promoted to Associate Professor. Over the years, Mr. Zeng has taught numerous undergraduate and postgraduate students, mentoring them in both classroom and research settings. His commitment to academic excellence is not limited to teaching—he has also played a vital role in fostering a research-driven environment in his department, contributing to the institute’s reputation in applied chemistry and materials science.

🔬 Contributions and Research Focus

Dr. Zeng’s primary research focus lies in first-principles calculations and molecular dynamics (MD) simulations, particularly studying the interactions between chemical solutions and crystals. His work explores how molecules interact at the atomic level in various solvents and ionic liquids, with significant applications in corrosion inhibition, surface science, and green chemistry. Among his noteworthy studies are simulations involving nitrobenzene in ionic liquids, benzotriazole derivatives interacting with Cu₂O crystals, and polymer inhibitors on anhydrite surfaces.

His publications, featured in top-tier journals like Electrochimica Acta, Journal of Molecular Liquids, and Surface and Interface Analysis, have been well received by the global scientific community. His collaborative work with other researchers reflects his openness to interdisciplinary exploration and academic networking. Furthermore, his research during his one-year visiting scholarship at the Research School of Chemistry, Australian National University (2018–2019), provided him exposure to cutting-edge developments and broadened his academic perspective.

🏆 Accolades and Recognition

In recognition of his outstanding work in research and innovation, Jianping Zeng was awarded the Municipal Third Prize for Progress in Science and Technology in 2011. This accolade is a testament to the practical impact and scientific value of his research within the regional and national context. His active participation in international and national academic forums—such as the International Conference on Electrochemical Energy Science and Technology (2016) and the 12th National Conference of Quantum Chemistry (2014)—also highlights his professional standing and dedication to continuous learning and contribution to the scientific dialogue.

🌏 Impact and Influence

Jianping Zeng has significantly influenced the scientific community through his simulations that help better understand molecular interactions relevant to environmental protection, chemical manufacturing, and materials engineering. His insights into corrosion inhibitors and solvent behaviors not only support the theoretical modeling community but also provide practical implications for industries seeking sustainable and effective chemical processes.

As a professor and mentor, his guidance has helped shape the careers of many young chemists and engineers. His ability to translate complex theoretical models into understandable and applicable knowledge has made him a valued educator and researcher in his institution.

🌱 Legacy and Future Contributions

Looking ahead, Mr. Zeng is well-positioned to make further impactful contributions in the realms of computational materials science, green chemistry, and crystal-solution interaction studies. With the ever-increasing relevance of simulation tools in modern chemistry, his expertise is likely to play a pivotal role in developing eco-friendly materials and enhancing the predictive modeling of chemical behaviors. His international experience, collaborative mindset, and proven research capabilities suggest that his influence will continue to expand both within China and globally.

By training future scientists and pursuing high-impact research, Jianping Zeng is contributing to a legacy that bridges theoretical innovation with real-world chemical engineering challenges. As computational methods become more integrated with experimental chemistry, his work will remain crucial in driving advancements in sustainable materials science.

📘Publication Top Notes

Author: J., Zeng, Jianping, C., Wang, Chunfu, S., Zeng, Siyuan, W., Li, Wenao, S., Chen, Song

Journal: Molecular Liquids

Year: 2024

Author: J., Zeng, Jianping, Y., Zhang, Yan, S., Zeng, Shuyu, L., Pubu, Luobu, S., Chen, Song

Journal: Molecular Graphics and Modelling

Year: 2024