Yong Li | Engineering | Best Researcher Award | 13407

Assoc Prof Dr Yong Li | Engineering | Best Researcher Award 

Assoc Prof Dr Yong Li, Fujian Police College, China

Dr. Yong Li is an Associate Professor in the Department of Public Security at Fujian Police College, China, with a strong academic background in Traffic Information Engineering and Control, holding both a Ph.D. and Master’s degree from Beijing Jiaotong University. His research focuses on intelligent transportation systems, electromagnetic tomography, and traffic accident imaging. He has led and participated in several nationally funded projects and published extensively in top-tier journals such as IEEE Transactions and Ultrasonics. Dr. Li also holds multiple patents related to traffic monitoring and sensing technologies, and serves as a thesis supervisor at Fuzhou University, contributing actively to academic mentorship and innovation in traffic safety and public security.

Profile

Orcid

🎓 Early Academic Pursuits

Dr. Yong Li’s academic journey showcases a strong foundation in engineering and traffic systems. He began his higher education at Beijing Union University, earning a Bachelor’s degree in Electrical Engineering and Automation between 2011 and 2015. This foundational training set the stage for his specialized focus in traffic and control systems.

Continuing on an ambitious academic path, he pursued both his Master’s (2015–2017) and Ph.D. (2017–2021) degrees in Traffic Information Engineering and Control at Beijing Jiaotong University, one of China’s top institutions in transportation sciences. His graduate studies equipped him with in-depth knowledge in traffic monitoring, signal processing, and system optimization—areas that would become central to his later research.

👨‍🏫 Professional Endeavors

After completing his doctorate, Dr. Li immediately immersed himself in both academic and applied research environments. He initially served as a Researcher at the Human-like Perception Research Center, Zhejiang Laboratory from June to September 2021, contributing to cutting-edge studies in perception technologies.

In November 2021, Dr. Li joined the Department of Public Security at Fujian Police College as a Lecturer, and was later promoted to Associate Professor. His role encompasses teaching, guiding student research, and leading scientific inquiries into intelligent transportation and traffic safety systems. He is also an External Master’s Thesis Supervisor at the College of Big Data and Computer Science, Fuzhou University since December 2021, further reflecting his academic mentorship roles.

🔬 Contributions and Research Focus

Dr. Li has an impressive record of participation in high-level scientific research. His primary focus lies in electromagnetic tomography, traffic accident imaging, and intelligent transportation systems. He has been a Principal Investigator for multiple projects, including:

  • “Large-scale Electromagnetic Tomography for Road Traffic Monitoring” (NSFC Project No. 62301159)

  • “Dual-plane Linear Array Electromagnetic Tomography for Traffic Accident Imaging”

  • “Urban Road Traffic Situation Assessment System” funded by Fujian’s Department of Finance

He is also a core participant in a significant ongoing NSFC project titled “Optimization of Delay Operation in Integrated Subway-Bus Networks in Metropolises”.

His work spans both theoretical modeling and applied systems, focusing on real-time data acquisition, traffic state estimation, and sensor technology for safety enhancement.

🏅 Accolades and Recognition

While explicit awards or honors are not detailed in the provided profile, Dr. Li’s consistent leadership in nationally funded research projects—particularly as a Principal Investigator on NSFC and provincial-level grants—is a strong indicator of peer recognition and institutional trust. His appointment as an Associate Professor within just a few years of completing his Ph.D. further underscores his rising prominence in the field.

🌍 Impact and Influence

Dr. Li’s work has direct societal implications, especially in improving urban traffic safety, accident response efficiency, and transportation infrastructure monitoring. His research contributes to China’s broader smart city initiatives and public security advancements, particularly in densely populated urban areas.

By bridging electrical engineering, traffic systems, and intelligent sensing, Dr. Li plays a pivotal role in making city transportation safer, more responsive, and more technologically advanced.

🚀 Legacy and Future Contributions

Looking forward, Dr. Li is poised to continue expanding the intersection of AI, electromagnetic sensing, and traffic control systems. His current NSFC and provincial projects are likely to yield further innovations in how we understand and manage traffic flow, detect anomalies, and respond to emergencies in real time.

With his expanding role as an educator and mentor, his influence will also be felt through the next generation of public safety and traffic engineering professionals in China. Dr. Li’s combination of academic rigor, inventive spirit, and societal relevance makes him a key figure in the evolution of smart transportation technologies.

📚Publications Top Notes

A Kalman Filtering Method on Time–Frequency Discrimination Analysis

Contributors: Li, Y.; Xiao, F.

Journal: ircuits, Systems, and Signal Processing

Year:  2025

Contributors: Li, Y.; Tao, X.; Sun, Y.
Journal: Electronics (Switzerland)
Year: 2024

Xiangxiang Zhu | Engineering | Best Researcher Award

Dr. Xiangxiang Zhu | Engineering | Best Researcher Award

Dr. Xiangxiang Zhu, Northwestern Polytechnical University,China

Dr. Xiangxiang Zhu is a distinguished scholar and researcher at Northwestern Polytechnical University, China. He specializes in advanced materials science, focusing on the development of innovative materials and technologies for aerospace and defense applications. Dr. Zhu has contributed extensively to the fields of material characterization, composite structures, and additive manufacturing, with numerous publications in high-impact journals. His work has significantly advanced the understanding and application of cutting-edge materials in engineering and technology.

Profie

Orcid

📚Educational Qualification

Xiangxiang Zhu began his academic journey with a strong foundation in mathematics, which laid the groundwork for his innovative career. He pursued his Ph.D. in Applied Mathematics from the prestigious Xi’an Jiaotong University, one of China’s leading institutions. His academic rigor and passion for problem-solving were evident during his formative years. Notably, he enriched his doctoral experience as a visiting scholar at the National University of Singapore from 2019 to 2020. This opportunity allowed him to collaborate with esteemed global experts, expanding his perspective and skillset in advanced mathematical applications.

🏛️ Professional Experience 

Currently, Xiangxiang Zhu is an Associate Professor in the School of Mathematics and Statistics at Northwestern Polytechnical University. In this role, he seamlessly integrates mathematical theories with engineering applications, emphasizing innovation and collaboration. His research focuses on advanced signal processing techniques, particularly in non-stationary signal processes, high-resolution time-frequency analysis, nonnegative matrix factorization, and adaptive learning.

Beyond academia, Dr. Zhu has also engaged in consultancy projects such as fault diagnosis and underwater acoustic target recognition. These endeavors underscore his ability to bridge theoretical research with practical industry needs, delivering impactful solutions in real-world scenarios.

🔬 Contributions and Research Focus

Dr. Zhu has made significant strides in the field of time-frequency (TF) analysis. One of his notable contributions is the development of the IF equation-based TF post-processing method. This innovative framework offers several advantages over traditional methods:

  • Concise Signal Representation: The IF equation characterizes complex signals more efficiently, simplifying intricate analyses.
  • Enhanced Feature Extraction: It serves as an effective feature extractor for mixed signals, enabling accurate analysis of harmonic and impulsive components.
  • Versatile Applications: This method has been successfully applied in diverse areas, including seizure detection, gravitational-wave analysis, and bearing fault diagnosis.

Dr. Zhu’s collaborative spirit is exemplified in his joint work with Professor François Auger on high-resolution wavelet transform techniques. Together, they co-authored three impactful articles, advancing the understanding and application of wavelet analysis in signal processing.

🏆 Accolades and Recognition

Dr. Zhu’s contributions to applied mathematics and signal processing have not gone unnoticed. With over 22 peer-reviewed publications in esteemed journals indexed in SCI and Scopus, his work is widely recognized and cited. His research has garnered 392 citations on Scopus, reflecting its influence and relevance in the academic community. Additionally, Dr. Zhu has filed two patents, showcasing his ability to translate innovative ideas into practical, protectable assets.

As a member of the China Society of Industrial and Applied Mathematics, he actively contributes to the advancement of applied mathematical sciences within China and globally.

📖Publication Top Notes 

IF equation: A feature extractor for high-concentration time-frequency representation and application to mixed signals analysis

Contributors: Xiangxiang Zhu; Kunde Yang; Zhuosheng Zhang; Wenting Li
Journal: Measurement
Year: 2024

Parameter analysis of chirplet transform and high-resolution time-frequency representation via chirplets combination

Contributors: Xiangxiang Zhu; Bei Li; Kunde Yang; Zhuosheng Zhang; Wenting Li
Journal: Signal Processing
Year: 2023
Contributors: Zhen Li; Jinghuai Gao; Hui Li; Zhuosheng Zhang; Naihao Liu; Xiangxiang Zhu
Author: Signal Processing
Year: 2020
Contributors: Xiangxiang Zhu; Zhuosheng Zhang; Jinghuai Gao; Bei Li; Zhen Li; Xin Huang; Guangrui Wen
Journal: Digital Signal Processing
Year: 2019

 

 

 

 

Young Soo Yoon | Engineering | Best Researcher Award

Prof. Young Soo Yoon | Engineering | Best Researcher Award

Technology Transfer at Gachon University, South Korea.

Young Soo Yoon, PhD, is a distinguished researcher and professor at Gachon University’s Department of Environment and Energy Engineering. He earned his PhD from the Korea Advanced Institute of Science and Technology and has held significant roles including Research Fellow at the University of Minnesota and Principal Research Scientist at the Korea Institute of Science and Technology. His academic journey includes tenure as an associate professor at Konkuk University and Yonsei University. Dr. Yoon’s current research focuses on advanced materials for all-solid lithium-based secondary batteries and nuclear materials, particularly in cladding and MSR reactors. He brings expertise in thin film processes, measurement, and the synthesis of nano-tailored ceramic-metal composite powders for battery applications, including innovative ATF cladding processes using room temperature swaging methods.

Professional Profiles:

Education 🎓

He earned his Ph.D. from the Korea Advanced Institute of Science and Technology (KAIST), Korea, specializing in his research focus on all solid Li-based secondary battery materials and systems, nuclear materials such as cladding and MSR reactor.

Professional Experience

He has held significant positions in academia and research, starting as a Research Fellow at the Academic Staff at the University of Minnesota and later as a Principal Research Scientist at the Korea Institute of Science and Technology from 1997 to 2003. Transitioning into academia, he served as an Associate Professor at the Department of Advanced Technology Fusion of Konkuk University from 2004 to 2008, followed by a tenure at the Department of Materials Science and Engineering of Yonsei University from 2008 to 2012. Currently, he holds a professorship at the Department of Environment and Energy Engineering at Gachon University, where he continues to lead research in advanced materials for energy storage and nuclear applications.

Research Interest

His current research interests are focused on two primary areas. Firstly, he specializes in the development of advanced materials and systems for all-solid lithium-based secondary batteries, emphasizing innovations in electrode materials and solid electrolytes. Secondly, he explores nuclear materials, particularly in the areas of cladding materials and Molten Salt Reactor (MSR) technologies. With a wealth of experience in thin-film processes, nanostructured ceramics, and composite powder synthesis tailored for battery applications, his recent endeavors include pioneering advancements in the development of new cladding processes for nuclear reactors using room temperature swaging methods.

Research Skills

He possesses matured experience in various domains, including thin film processes and measurements, essential for precise fabrication and characterization in materials science. His expertise extends to the synthesis of nano-tailored ceramic-metal composite powders, particularly for electrodes and solid electrolytes in lithium-based secondary battery systems. His current focus includes pioneering new processes for Advanced Thin Film (ATF) cladding using innovative room temperature swaging methods, aimed at enhancing the safety and efficiency of nuclear materials. These skills underline his proficiency in advancing technologies crucial for energy storage solutions and nuclear reactor safety.

Publications

  1. Corrigendum to “Fabrication and characteristics of Li2TiO3 pebbles manufactured by using powder injection molding (PIM) process”
    • Authors: Park, Y.A., Park, Y.-H., Ahn, M.-Y., Yoon, Y.S.
    • Journal: Journal of Nuclear Materials, 2024, 598, 155165
  2. Fabrication and characteristics of Li2TiO3 pebbles manufactured by using powder injection molding (PIM) process
    • Authors: Park, Y.A., Park, Y.-H., Ahn, M.-Y., Yoon, Y.S.
    • Journal: Journal of Nuclear Materials, 2024, 597, 155140
  3. Selective etching-induced surface modifications of FeCrAl alloy bipolar plates: Mechanisms for enhanced corrosion resistance and hydrophobicity
    • Authors: Kang, H.E., Kim, S.H., Choi, J.-H., Kim, D.-J., Yoon, Y.S.
    • Journal: Chemical Engineering Journal, 2024, 493, 152409
  4. Corrigendum to “Li4SiO4 slurry conditions and sintering temperature for fabricating Li4SiO4 pebbles as tritium breeder for nuclear-fusion reactors”
    • Authors: Park, Y.A., Yoo, J.W., Park, Y.-H., Yoon, Y.S.
    • Journal: Nuclear Engineering and Technology, 2024, 56(5), 1941
  5. Enhanced Durability and Catalytic Performance of Pt–SnO2/Multi-Walled Carbon Nanotube with Shifted d-Band Center for Proton-Exchange Membrane Fuel Cells
    • Authors: Min, H., Choi, J.-H., Kang, H.E., Kim, D.-J., Yoon, Y.S.
    • Journal: Small Structures, 2024, 5(3), 2300407
    • Citations: 3
  6. Recent progress in utilizing carbon nanotubes and graphene to relieve volume expansion and increase electrical conductivity of Si-based composite anodes for lithium-ion batteries
    • Authors: Kang, H.E., Ko, J., Song, S.G., Yoon, Y.S.
    • Journal: Carbon, 2024, 219, 118800
    • Citations: 2
  7. Characterization of CrAl coating on stainless steel bipolar plates for polymer electrolyte membrane fuel cells
    • Authors: Kang, H.E., Choi, J.-H., Lee, U., Kim, H.-G., Yoon, Y.S.
    • Journal: International Journal of Hydrogen Energy, 2024, 51, 1208–1226
    • Citations: 6
  8. Effect of ball milling energy and carbon content on electrochemical properties of FeF3/acetylene black composites for high-capacity thermal battery
    • Authors: Park, S.-H., Kim, S.H., Cheong, H.-W., Yoon, Y.S.
    • Journal: Ceramics International, 2024 (Article in Press)
  9. Corrigendum: Enhanced electrochemical properties of catalyst by phosphorous addition for direct urea fuel cell
    • Authors: Lee, U., Lee, Y.N., Yoon, Y.S.
    • Journal: Frontiers in Chemistry, 2024, 12, 1400748
  10. Hierarchical PtCuMnP Nanoalloy for Efficient Hydrogen Evolution and Methanol Oxidation
    • Authors: Basumatary, P., Choi, J.-H., Konwar, D., Han, B., Yoon, Y.S.
    • Journal: Small Methods, 2024 (Article in Press)