Tiezhen Ren | Advanced Materials Engineering | Research Excellence Award

Prof. Tiezhen Ren | Advanced Materials Engineering | Research Excellence Award

Xinjiang university | China

Prof. Dr. Tie-Zhen Ren is a distinguished Professor at the School of Chemical Engineering, Xinjiang University, China. She obtained her Ph.D. in Inorganic Materials Chemistry from the University of Namur (FUNDP), Belgium, where she completed a thesis on hierarchically nanoporous functional materials under the supervision of Prof. Bao-Lian Su. Prior to her doctorate, she studied Polymer Engineering at Tianjin Institute of Technology and later pursued graduate studies in Plant Protection at Anhui Agricultural University. Her academic career includes serving as a Professor at Hebei University of Technology (2007–2021), conducting postdoctoral research at Stockholm University in Sweden, and working as a visiting researcher at the City College of New York. Prof. Ren’s research focuses on the synthesis and characterization of nanostructured materials, mesoporous silica and metal oxide systems, photocatalysis, environmental materials, crystalline porous germanium oxides, catalyst development, and biomass-derived functional materials. She has extensive experience with advanced characterization techniques such as TEM, SEM-EDX, XRD, FT-IR, and electrochemical systems, and actively teaches courses such as General Chemistry, Chemical Engineering Principles, Catalysis, and Technical English. Prof. Ren has been the recipient of numerous prestigious honors, including the China National Scholarship for Outstanding Self-Financed Students Abroad, the Tianchi Talent Leader Award, and the Tianjin Natural Science Award. She has led multiple national and international research projects funded by the National Natural Science Foundation of China, Ministry of Education, and Xinjiang Autonomous Region, focusing on photocatalysis, nanocatalyst design, biomass valorization, and environmental remediation. She has authored and co-authored more than 80 peer-reviewed scientific publications across high-impact journals and continues to contribute to research in sustainable chemistry, catalysis, and materials science. She is fluent in English and Chinese and has basic proficiency in French.

Profiles: Scopus | Orcid

Featured Publications

Huang, S., Zhang, H., Zhang, T., Li, C., Ren, T., & He, Z. (2025). High‐efficiency exfoliation of atomically‐thin non‐Van der Waals quasicrystal nanosheets with enhanced electrocatalytic oxygen evolution reaction performance. Small Methods. https://doi.org/10.1002/smtd.202501162


Song, Z.-H., Muhammad, I., Ren, T.-Z., Abulizi, A., Okitsu, K., Li, H.-R., & Zhang, X.-J. (2025, March 27). Preparation of Al₂O₃ nanoparticles via fluidized roasting and their application in the pyrolysis of spent mulching film for hydrocarbon production. ACS Sustainable Resource Management. https://doi.org/10.1021/acssusresmgt.4c00436


Han, J., Sun, L., Ulbricht, M., Fischer, L., Zhang, G., Gao, W., Lv, L., Ren, T., Liu, X., & Ren, Z. (2025). Sulfite enhanced permanganate/Fe(II) moderate oxidation coagulation for the treatment of algae-laden water: Performance and mechanisms. Chemical Engineering Journal. https://doi.org/10.1016/j.cej.2024.159084


Fu, H., Bai, H., Abulizi, A., Okitsu, K., Maeda, Y., Ren, T., & Wang, S. (2024). Surfactant-enhanced ZnOₓ/CaO catalytic activity for ultrasound-assisted biodiesel production from waste cooking oil. Reaction Chemistry & Engineering. https://doi.org/10.1039/D3RE00306J


Cui, M.-J., Li, S.-S., Ren, T., Abulizi, A., & Nulahong, A.-S. (2024). Boosting BaTi₄O₉ photocatalytic H₂ evolution activity by functionalized CuNi alloy. Journal of Photochemistry and Photobiology A: Chemistry. https://doi.org/10.1016/j.jphotochem.2024.115834


Cui, M.-J., Muhammad, I., Feng, J., & Ren, T. (2024). Isopropanol assisted preparation of α–Al₂O₃ nanoparticles and its surface charge investigation. Solid State Sciences. https://doi.org/10.1016/j.solidstatesciences.2024.107706

Qingguo Ma | Chemical Engineering | Excellence in Innovation Award

Dr. Qingguo Ma | Chemical Engineering | Excellence in Innovation Award

Taiyuan Institute of Technology | China

Dr. Qingguo Ma, an accomplished Associate Professor at the Taiyuan Institute of Technology, is a distinguished researcher specializing in advanced wastewater treatment, particularly in the catalytic degradation of formaldehyde. With a doctoral degree obtained from the School of Chemical Engineering and Technology at Nanjing University of Science and Technology, Dr. Ma has established a focused research trajectory in the development of innovative and efficient oxidation-based solutions for industrial pollutant removal. His work emphasizes the use of advanced oxidation processes employing oxidants such as hydrogen peroxide and monopersulfate in conjunction with highly efficient catalytic systems, including transition metal oxides and lanthanum-based composite metal oxide catalysts. Through this research, Dr. Ma has successfully achieved remarkable improvements in formaldehyde degradation efficiency, notably demonstrating degradation rates exceeding 90% under ambient conditions without the need for acidic, alkaline, photochemical, or electrocatalytic environments. This breakthrough shortens the oxidative degradation time by up to 12 times compared to conventional heterogeneous catalysts and provides a scalable pathway toward cost-effective and energy-efficient wastewater treatment technologies. Dr. Ma’s academic contributions are supported by a robust research profile, including five completed or ongoing research projects, eleven patents published or under application, and thirteen peer-reviewed publications indexed in SCI databases. His work has attracted growing scholarly attention, reflected in a developing citation index and engagement in two consultancy or industry-linked research initiatives. As a member of the Shanxi Provincial Society for Inspection and Testing, he actively contributes to the advancement of environmental monitoring and chemical engineering practices within the professional community. His research further explores the mechanistic pathways of formaldehyde oxidation, identifying both radical-driven and non-radical catalytic routes, which enhances scientific understanding and offers new design concepts for catalytic materials used in environmental remediation. Dr. Ma continues to expand collaborations and strengthen knowledge transfer through academic platforms, contributing meaningfully to scientific and societal progress in pollution control. With demonstrated excellence, innovation, and commitment to advancing sustainable wastewater treatment technologies, he exemplifies the qualities recognized by the Excellence in Innovation Award. Dr. Ma affirms the authenticity and accuracy of all information included in this application and acknowledges the guidelines and terms set forth for this nomination.

Profiles: Scopus | Orcid

Featured Publications

Ma, Q. (2024). Preparation of perovskite-type LaMnO₃ and its catalytic degradation of formaldehyde in wastewater. Molecules, 29(16). https://doi.org/10.3390/molecules29163822

Ma, Q. (2023). Removal of formaldehyde in water with low concentration of hydrogen peroxide catalyzed by lanthanum–silicon oxide composite. Desalination and Water Treatment, 29734. https://doi.org/10.5004/dwt.2023.29734

Ma, Q. (2023). The Baeyer–Villiger oxidation of cycloketones using hydrogen peroxide as an oxidant. Catalysts, 13(1). https://doi.org/10.3390/catal13010021

Ma, Q. (2022). Removal of formaldehyde from aqueous solution by hydrogen peroxide. Journal of Water Chemistry and Technology, 44(4). https://doi.org/10.3103/S1063455X22040099

Ma, Q. (2021). Enhancing propene selectivity in methanol and/or butene conversion by regulating channel systems over ZSM-5/ZSM-48 composite zeolites. Microporous and Mesoporous Materials, 310. https://doi.org/10.1016/j.micromeso.2020.110803

Ma, Q. (2015). Baeyer–Villiger oxidation of cyclic ketones with hydrogen peroxide catalyzed by silica–VTMO–OSO₃H. Journal of Porous Materials, 22(5). https://doi.org/10.1007/s10934-015-9918-8

Ma, Q. (2015). Silica/A153-SO₃H: An efficient catalyst for the Baeyer–Villiger oxidation of cyclic ketones with hydrogen peroxide. Comptes Rendus Chimie, 18(4). https://doi.org/10.1016/j.crci.2014.09.002

Ma, Q. (2015). Sn-bentonite-induced Baeyer–Villiger oxidation of 2-heptylcyclopentanone to δ-dodecalactone with aqueous hydrogen peroxide. Research on Chemical Intermediates, 41(5). https://doi.org/10.1007/s11164-013-1342-6

Weiwei Bian | Fretting corrosion for structural material | Best Researcher Award | 13416

Assoc Prof Dr Weiwei Bian | Structural material | Best Researcher Award

Assoc Prof Dr Weiwei Bian , Inner Mongolia University of Science and Technology, China

Dr. Weiwei Bian, PhD, is a researcher and faculty member at the School of Materials Science and Engineering, Inner Mongolia University of Science and Technology. His work focuses on the fretting corrosion behavior of structural materials, especially in nuclear steam generator tubes. With nine first-author publications in high-impact journals and a citation index of 25, Dr. Bian has made significant contributions to understanding the influence of hydrogen and dissolved oxygen in high-temperature, high-pressure environments. Awarded the Outstanding Doctoral Dissertation Prize by the University of Science and Technology Beijing, he continues to lead projects that bridge academic insight with practical applications in nuclear energy systems.

Profile

ORCID

🎓 Early Academic Pursuits

Dr. Weiwei Bian’s academic foundation was built through rigorous study in the field of materials science and engineering, culminating in a Ph.D. from the prestigious University of Science and Technology Beijing. His early academic work was characterized by a deep interest in material degradation phenomena, particularly within high-stress industrial environments such as those encountered in nuclear power systems. His commitment to excellence during his doctoral studies was formally recognized with the Outstanding Doctoral Dissertation Award, an honor that reflects both the originality and technical merit of his research.

🏫 Professional Endeavors

Currently, Dr. Bian is a key academic and researcher at the School of Materials Science and Engineering, Inner Mongolia University of Science and Technology. He has become a pivotal figure in the university’s research efforts related to corrosion mechanisms and structural material integrity. Balancing both teaching and research, he plays a central role in training the next generation of engineers and material scientists while pushing forward the boundaries of tribological and corrosion-related research. His research agenda remains closely aligned with critical national and international concerns in nuclear materials safety and performance.

🔬 Contributions and Research Focus

Dr. Bian’s work focuses primarily on fretting corrosion mechanisms, especially in nuclear steam generator tubes made of zirconium alloys. His research stands out for its originality and practical implications. In particular, he has advanced the understanding of tangential and impact fretting corrosion—phenomena that are often overlooked but critical to the structural integrity of materials in dynamic and high-pressure environments.

🏅 Accolades and Recognition

Dr. Bian’s academic excellence has been formally acknowledged through multiple avenues. His Outstanding Doctoral Dissertation Award from the University of Science and Technology Beijing was a milestone in his career. His research publications, several in SCI-indexed journals, have attracted 25 citations, reflecting the growing impact and relevance of his work. Although he has not yet authored books or secured patents, his contributions are recognized in the professional materials science community, particularly for their relevance to nuclear energy safety and reliability.

🌍 Impact and Influence

Dr. Bian’s influence extends beyond academia and into the industrial sphere. His consultancy and collaborative projects reflect his applied knowledge and innovative approach to real-world problems. Among his notable projects are:

  • 🔧 A fretting damage lifetime prediction model for heat transfer tubes under extreme conditions

  • 🧠 Research into intelligent operation and maintenance systems for steam generators

  • 💡 Studies on failure mechanisms and surface strengthening techniques for high-parameter nuclear valve components

These projects are aligned with critical national interests in nuclear energy safety, highlighting Dr. Bian’s role in bridging the gap between theory and application.

🌟 Legacy and Future Contributions

Although still early in his career, Dr. Bian is already laying the groundwork for a significant legacy in materials science. His interdisciplinary focus—combining tribology, materials engineering, and corrosion science—makes his research particularly valuable for the evolving demands of high-performance industrial systems. Future contributions are likely to involve:

  • 📈 Development of data-driven predictive tools for corrosion behavior

  • 🌐 International collaborations to address global energy challenges

  • 🧑‍🏫 Expanded mentorship roles, cultivating emerging researchers in structural material innovation

📝 Short Summary Paragraph

Dr. Weiwei Bian, Ph.D., is a researcher at Inner Mongolia University of Science and Technology, specializing in the fretting corrosion of nuclear-grade structural materials. With an award-winning academic background and impactful research in material degradation mechanisms, Dr. Bian’s work advances both theoretical understanding and industrial practice in nuclear systems engineering. His contributions hold significant promise for future innovation in material longevity and energy safety.

Publications Top Notes

Fretting corrosion behavior and microstructure evolution of hydrided zirconium alloy under gross slip regime in high temperature high pressure water environment

Contributors: Kang, L.Z.; Lu, Y.H.; Bian, W.W.; Yu, P.J.; Wang, Y.B.; Xin, L.; Han, Y.M.

Journal: Corrosion Science
Year: 2025

Thermal aging effect on elevated temperature deformation mechanisms of 316L stainless steel weld metal by small punch test

ContributorsFan, Y.; Hu, J.Y.; Bian, W.W.; Hu, Y.; Cui, K.X.

Journal: Materials Science and Engineering:
Year: 2025

Effect of fretting wear regimes on stress corrosion cracking of Alloy 690TT in high-temperature pressurized water

Contributors: Bian, W.W.; Lu, Y.H.; Zhang, X.F.; Han, Y.M.; Wang, F.; Shoji, T.

Journal: Corrosion Science
Year: 2024