Kirill Poletkin | Engineering | Best Research Article Award

Prof. Kirill Poletkin | Engineering | Best Research Article Award

Hefei University of Technology | China

Professor Kirill V. Poletkin is a distinguished researcher and academic specializing in micro- and nano-scale electromechanical systems, contactless levitation micro-actuators, MEMS inertial sensors, and precision instrumentation. He currently serves as a Professor (Talents Programme) at the School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, China. Prof. Poletkin earned his Ph.D. in Control Systems, Informatics, and Electrical Engineering from the Moscow Aviation Institute in 2007, where his doctoral research focused on closed-loop rotor vibratory gyroscopes. He obtained his M.Eng. with honors from Nizhny Novgorod State Technical University, with award-winning research in vibration theory and dynamically tuned gyroscopes recognized by the Ministry of Education and Science of the Russian Federation. With over two decades of international research experience, he has held academic and research positions at leading institutions including the Karlsruhe Institute of Technology, University of Freiburg, Nanyang Technological University, Innopolis University, and New Uzbekistan University. He is a former Alexander von Humboldt Research Fellow and has served as Principal Investigator on multiple competitively funded projects supported by the German Research Foundation (DFG) and Chinese provincial agencies. Prof. Poletkin has authored over 86 scientific publications, including 37 peer-reviewed journal articles, book chapters, and a Springer monograph titled Levitation Micro-Systems: Applications to Sensors and Actuators. His pioneering contributions to zero–spring-constant contactless suspensions, hybrid inductive–electrostatic levitation systems, and semi-analytical electromagnetic modeling have enabled new generations of high-precision sensors, actuators, and micro-transport technologies.

Citation Metrics (Scopus)

600
500
400
300
200
100
50
30
10
0

Citations
547

Documents
59

h-index
15

Citations

h-index

i10-index

View Scopus Profile

Featured Publications

Tinggui Chen | Engineering | Research Excellence Award

Dr. Tinggui Chen | Engineering | Research Excellence Award 

Hefei University of Technology | China

Dr. Tinggui Chen is a highly accomplished researcher and academic in the field of mechanical engineering, with a specialized focus on acoustic metamaterials, phononic crystals, and advanced signal detection techniques. He completed his doctoral studies in mechanical engineering under the supervision of Prof. Dejie Yu at Hunan University, after earning both his bachelor’s degree from Hainan University and master’s degree from Hunan University. During his doctoral tenure, he developed innovative methodologies for enhancing acoustic sensing and signal detection using engineered metamaterials, establishing a strong foundation for his research career. Dr. Chen’s work is characterized by its combination of theoretical insight and experimental rigor, particularly in the design and application of gradient metamaterials, coiling-up structures, and space-time-modulated systems. His research has led to significant advancements in weak signal detection, directional acoustic sensing, and energy amplification in phononic systems. Notably, his studies on multi-frequency signal enhancement via gradient defect phononic crystals and space-time-modulated airborne acoustic circulators demonstrate his ability to bridge fundamental physics with practical engineering applications. He has actively contributed to the international scientific community through his extensive publication record, which includes articles in high-impact journals such as Measurement, Physical Review Applied, IEEE Transactions on Industrial Informatics, Mechanical Systems and Signal Processing, Journal of Sound and Vibration, IEEE Sensors Journal, Journal of Physics D: Applied Physics, and Physical Review B. These publications reflect his sustained focus on acoustic metamaterials, phononic crystal resonators, and novel techniques for signal demodulation and amplification, marking him as a leading expert in his domain. Dr. Chen’s research trajectory has also been enriched by international exposure and collaborative experiences. As a visiting scholar at EPFL under Prof. Romain Fleury, he explored cutting-edge experimental demonstrations in acoustic systems, further strengthening his expertise in wave manipulation and signal processing. Currently, as a postdoctoral researcher at Shanghai Jiao Tong University and an assistant professor at Hefei University of Technology, he continues to advance both fundamental and applied research, integrating computational modeling, experimental acoustics, and material design. His contributions have significant implications for industrial monitoring, structural health assessment, and the development of high-precision acoustic devices. With a strong focus on innovation, interdisciplinary collaboration, and practical application, Dr. Chen exemplifies the integration of scientific research and engineering solutions, positioning him as a rising leader in the field of mechanical engineering and acoustic metamaterials.

Profile: Orcid

Featured Publications

Chen, T., Zhu, M., Li, L., Wei, H., & Xia, B. (2026). Multi-frequency weak signals enhancement detection via gradient defect phononic crystals. Measurement, 261, 119933. https://doi.org/10.1016/j.measurement.2025.119933

Chen, T., Malléjac, M., Bi, C., Xia, B., & Fleury, R. (2025). Experimental demonstration of a space-time-modulated airborne acoustic circulator. Physical Review Applied, 23, 054017. https://doi.org/10.1103/PhysRevApplied.23.054017

Chen, T., Xia, B., Yu, D., & Bi, C. (2024). Robust enhanced acoustic sensing via gradient phononic crystals. Physics Letters A, 440, 129242. https://doi.org/10.1016/j.physleta.2023.129242

Chen, T., Wang, C., & Yu, D. (2022). Pressure amplification and directional acoustic sensing based on a gradient metamaterial coupled with space-coiling structure. Mechanical Systems and Signal Processing, 181, 109499. https://doi.org/10.1016/j.ymssp.2022.109499

Chen, T., & Yu, D. (2022). A novel method for enhanced demodulation of bearing fault signals based on acoustic metamaterials. IEEE Transactions on Industrial Informatics, 18(10), 6857–6864. https://doi.org/10.1109/tii.2022.3143161

Chen, T., Jiao, J., & Yu, D. (2022). Strongly coupled phononic crystals resonator with high energy density for acoustic enhancement and directional sensing. Journal of Sound and Vibration, 529, 116911. https://doi.org/10.1016/j.jsv.2022.116911

Sedighe Mirbolouk | Engineering | Editorial Board Member

Dr. Sedighe Mirbolouk | Engineering | Editorial Board Member 

Iran National Science Foundation | Iran

Dr. Sedighe Mirbolouk is a dedicated postdoctoral researcher and advanced machine learning specialist with strong expertise in communication systems, data science, and artificial intelligence. She is affiliated with the Iran National Science Foundation and has built a diverse research portfolio spanning deep learning, wireless communication optimization, image processing, and intelligent sensing systems. Her technical proficiency covers a wide spectrum of tools and programming environments, including Python, MATLAB, LATEX, and advanced libraries such as TensorFlow, PyTorch, Scikit-learn, NumPy, SciPy, Pandas, and Matplotlib. With a strong theoretical foundation in data telecommunication networks, convex optimization, communication theory, and signal and image processing, she integrates computational intelligence with modern communication challenges. In her role as a Postdoctoral Researcher (2024–2025) at the Iran National Science Foundation, Dr. Mirbolouk focuses on cutting-edge topics in graph learning and federated learning, particularly designing machine learning approaches for predictive beamforming in Reconfigurable Intelligent Surface (RIS)-aided Integrated Sensing and Communication (ISAC) systems. Her work aims to improve efficiency, adaptability, and intelligence in next-generation wireless communication networks. Previously, she served as a Visiting Researcher (2022) at the University of Oulu in Finland, where she explored advanced deep reinforcement learning methods to enhance ISAC designs. These research experiences have positioned her at the frontier of combining AI with communication technologies. During her doctoral studies at the University of Urmia (2018–2021), Dr. Mirbolouk contributed significantly to satellite–UAV cooperative network optimization. She developed innovative solutions involving UAV selection and power allocation for CoMP-NOMA transmissions, introducing both Lagrangian and heuristic algorithms that advanced energy-efficient communication frameworks. Alongside communications research, she proposed image processing solutions such as fuzzy histogram weighting methods and contrast enhancement techniques. Her academic involvement includes teaching core engineering subjects—Digital Communication, Probability and Statistics, and Signals and Systems—and assisting courses on Stochastic Processes and Digital Signal Processing. Her work at the National Elite Foundation (2020–2022) expanded her portfolio into biomedical machine learning applications, where she designed systems for automatic breast cancer detection using histopathology images and cardiac arrhythmia recognition using ECG signals through deep learning approaches. Dr. Mirbolouk holds a Ph.D. in Electrical Engineering, with earlier B.Sc. and M.Sc. degrees from the University of Guilan, where she studied SAR radar Doppler ambiguity for moving targets. Her scholarly contributions include high-impact publications in journals such as IEEE Transactions on Vehicular Technology, Physical Communication, and Multimedia Tools and Applications. Collectively, her research reflects an outstanding integration of machine learning, optimization, sensing, and communication technologies.

Profile: Google Scholar

Featured Publications

Mirbolouk, S., Valizadeh, M., Amirani, M. C., & Ali, S. (2022). Relay selection and power allocation for energy efficiency maximization in hybrid satellite-UAV networks with CoMP-NOMA transmission. IEEE Transactions on Vehicular Technology, 71(5), 5087–5100.

Mirbolouk, S., Valizadeh, M., Amirani, M. C., & Choukali, M. A. (2021). A fuzzy histogram weighting method for efficient image contrast enhancement. Multimedia Tools and Applications, 80(2), 2221–2241.

Mirbolouk, S., Choukali, M. A., Valizadeh, M., & Amirani, M. C. (2020). Relay selection for CoMP-NOMA transmission in satellite and UAV cooperative networks. 2020 28th Iranian Conference on Electrical Engineering (ICEE), 1–5.

Choukali, M. A., Valizadeh, M., Amirani, M. C., & Mirbolouk, S. (2023). A desired histogram estimation accompanied with an exact histogram matching method for image contrast enhancement. Multimedia Tools and Applications, 82(18), 28345–28365.

Hussein, A. A., Valizadeh, M., Amirani, M. C., & Mirbolouk, S. (2025). Breast lesion classification via colorized mammograms and transfer learning in a novel CAD framework. Scientific Reports, 15(1), 25071.

Choukali, M. A., Mirbolouk, S., Valizadeh, M., & Amirani, M. C. (2024). Deep contextual bandits-based energy-efficient beamforming for integrated sensing and communication. Physical Communication, 68, 102576.

Abu Farzan Mitul | Engineering | Best Researcher Award

Dr. Abu Farzan Mitul | Engineering | Best Researcher Award

Leidos | United States

Dr. Abu Farzan Mitul is an accomplished researcher and educator specializing in opto-electronic device fabrication, fiber optic sensing technologies, and nanostructured thin-film materials. His research bridges the intersection of photonics, materials science, and advanced sensing systems — contributing to innovations that enhance environmental monitoring, industrial automation, and biomedical diagnostics. Dr. Mitul earned his Ph.D. in Electrical and Computer Engineering from the University of Texas at El Paso (UTEP), USA, where he designed and developed advanced fiber Bragg grating sensors and thin-film photonic devices for multi-parameter sensing applications. His earlier academic training includes a B.Sc. and M.Sc. in Applied Physics, Electronics, and Communication Engineering from the University of Dhaka, Bangladesh. Throughout his career, Dr. Mitul has collaborated with leading U.S. research institutions and agencies, including the Department of Energy (DOE), Department of Defense (DoD), and NASA, focusing on next-generation optoelectronic and energy-efficient sensing systems. His extensive publication record spans high-impact journals and international conferences in photonics, sensor technology, and materials characterization. In addition to his research, Dr. Mitul has served as a faculty member and laboratory instructor, mentoring undergraduate and graduate students in electronics, photonics, and experimental physics. He is passionate about advancing interdisciplinary research in fiber optic sensing, MEMS/NEMS devices, photonic integrated systems, and nanotechnology-driven device engineering. Dr. Mitul continues to explore innovative pathways toward miniaturized, high-sensitivity photonic systems with applications across environmental, aerospace, and biomedical fields — aligning cutting-edge materials research with sustainable technological development.

Profiles: Orcid | Google Scholar | Linkedin

Featured Publications

Adhikari, N., Dubey, A., Khatiwada, D., Mitul, A. F., Wang, Q., Venkatesan, S., & Qiao, Q. (2015). Interfacial study to suppress charge carrier recombination for high efficiency perovskite solar cells. ACS Applied Materials & Interfaces, 7(48), 26445–26454. https://doi.org/10.1021/acsami.5b08343

Rana, G. M. S. M., Khan, A. A. M., Hoque, M. N., & Mitul, A. F. (2013, December). Design and implementation of a GSM based remote home security and appliance control system. In 2013 2nd International Conference on Advances in Electrical Engineering (ICAEE) (pp. 291–295). IEEE. https://doi.org/10.1109/ICAEE.2013.6750340

Khatiwada, D., Venkatesan, S., Adhikari, N., Dubey, A., Mitul, A. F., Mohammad, L., … & Qiao, Q. (2015). Efficient perovskite solar cells by temperature control in single and mixed halide precursor solutions and films. The Journal of Physical Chemistry C, 119(46), 25747–25753. https://doi.org/10.1021/acs.jpcc.5b08667

Mitul, A. F., Mohammad, L., Venkatesan, S., Adhikari, N., Sigdel, S., Wang, Q., … & Qiao, Q. (2015). Low temperature efficient interconnecting layer for tandem polymer solar cells. Nano Energy, 11, 56–63. https://doi.org/10.1016/j.nanoen.2014.10.030

Venkatesan, S., Ngo, E. C., Chen, Q., Dubey, A., Mohammad, L., Adhikari, N., … & Qiao, Q. (2014). Benzothiadiazole-based polymer for single and double junction solar cells with high open circuit voltage. Nanoscale, 6(12), 7093–7100. https://doi.org/10.1039/C4NR00606H

Islam, M. M., Rafi, F. H. M., Mitul, A. F., Ahmad, M., Rashid, M. A., & Malek, M. F. B. A. (2012, May). Development of a noninvasive continuous blood pressure measurement and monitoring system. In 2012 International Conference on Informatics, Electronics & Vision (ICIEV) (pp. 695–699). IEEE. https://doi.org/10.1109/ICIEV.2012.6317425

 

Ning Chen | Engineering | Best Researcher Award | 13558

Mr. Ning Chen | Engineering | Best Researcher Award

Mr. Ning Chen, Shandong University of Science and Technology, China

Mr. Ning Chen, Lecturer at Shandong University of Science and Technology, China, is an emerging researcher in high-precision mechatronic systems. With a Ph.D. in mechanical engineering and prior industry experience, he has developed innovative piezoelectric galvanometers, stiffness-adjustable servo systems, and micro-nano motion platforms. His work is shaping the future of laser positioning, scanning, and ultra-precision control technologies. Backed by prestigious national and provincial research grants, Mr. Chen exemplifies academic excellence and practical innovation in mechanical and precision engineering.

Author Profile

Orcid

Education

Dr. Weijian Wang embarked on his academic journey with a solid foundation in chemical sciences. He earned his Bachelor’s degree in Chemical Engineering and Technology from the China University of Petroleum (East China)—an institution known for producing talent in energy and chemical sectors. His academic excellence and growing passion for applied chemical research led him to pursue a Master’s degree in Chemical Engineering at the China University of Mining and Technology, where he deepened his understanding of reaction engineering, process modeling, and advanced materials.

Eager to contribute to cutting-edge innovation in the energy sector, Dr. Wang pursued his Ph.D. in Chemical Technology at the Research Institute of Petroleum Processing (RIPP), Sinopec, one of China’s leading industrial research institutions. His doctoral training provided him with hands-on experience in industrial-scale research, advanced materials development, and interdisciplinary collaboration. To further strengthen his academic and research profile, Dr. Wang completed a postdoctoral fellowship at Zhejiang University, where he explored emerging materials and device applications, preparing him for a career at the intersection of academia and applied science.

Experience

In 2022, Dr. Wang joined Beibu Gulf University as an Associate Professor, where he has since led a promising research group focusing on halide perovskite materials. As a faculty member, he has embraced both teaching and research, mentoring students while pursuing innovative solutions to modern energy and optoelectronic challenges.

One of his key professional milestones includes leading the Guangxi Science and Technology Major Program (GuikeAA23062016). This ambitious research initiative demonstrates his leadership and technical capability in managing multi-disciplinary projects aligned with regional and national scientific goals. With no industry consultancies yet, Dr. Wang remains fully invested in academic research, pushing boundaries in materials science through both simulations and experimental designs.

Research Focus

Dr. Weijian Wang’s research is centered on the green synthesis and application of halide perovskite materials, a rapidly evolving class of compounds celebrated for their extraordinary optoelectronic properties. These materials are particularly promising in fields such as solar energy conversion, light-emitting diodes (LEDs), and medical bioimaging. At the heart of Dr. Wang’s innovation is the drive for sustainability. He has developed eco-friendly synthesis techniques that minimize environmental harm while maintaining material performance, advancing the goal of sustainable science. 🌱

In the field of perovskite solar cells, Dr. Wang employs simulation-assisted design methodologies to enhance energy conversion efficiency. His designs have led to devices with superior performance characteristics, addressing one of the key challenges in renewable energy technology. 🌞 Beyond energy, his research also extends to optoelectronic devices, including perovskite-based LEDs and imaging systems with applications in healthcare diagnostics and bioimaging. 💡

Dr. Wang’s robust scientific output includes 11 peer-reviewed publications in internationally recognized SCI-indexed journals, with eight authored as first or corresponding author. Additionally, he has secured 15 authorized invention patents as the primary inventor, underscoring his capacity to translate theoretical research into tangible technological innovations.

Award and Recognition

Despite being in the early stages of his academic journey, Dr. Wang has already built a strong research profile distinguished by originality, technical rigor, and innovation. His contributions have earned him 11 published articles in high-impact SCI-indexed journals, demonstrating both quality and consistency in scientific communication. 📚

Dr. Wang also holds 15 authorized invention patents, a notable achievement that reflects his focus on applied research and technology transfer. 🧾 These patents not only reinforce his expertise in halide perovskite materials but also highlight his dedication to practical solutions for global energy and environmental challenges.

Further elevating his academic standing, Dr. Wang currently leads a major government-funded research program, indicating trust in his leadership and vision at the national level. 💼 His H-index of 5 signifies an increasing impact within the scholarly community, with a trajectory that suggests sustained and growing influence in the years to come.

Although he does not yet hold editorial roles or memberships in professional societies, his impressive publication and patent record mark him as a promising figure in materials science. His career is on a path toward broader recognition, leadership roles, and continued contributions to the scientific community.

Publications

📖 A Semi-analytical Method for Vibro-Acoustic Properties of Functionally Graded Porous Piezoelectric Annular Plates with Cavity – Journal of Vibration Engineering and Technologies (2025).
📖 Enhancing the motion performance of 3-DOF micro/nano-manipulators facing thermo-piezoelectric-mechanical coupling effects – Sensors and Actuators A Physical (2025)
📖 Robust control of uncertain asymmetric hysteretic nonlinear systems with adaptive neural network disturbance observer – Applied Soft Computing (2024)
📖 Low thermal budget lead zirconate titanate thick films integrated on Si for piezo-MEMS applications – Microelectronic Engineering (2020)

 

 

 

Huiqin jia | Engineering | Women Researcher Award | 13437

Prof. Huiqin jia | Engineering | Women Researcher Award

Prof. Huiqin jia, xi’an shiyou university, China

Prof. Huiqin Jia, a distinguished faculty member at Xi’an Shiyou University, China, is a leading expert in multiphase flow detection methods and related signal processing algorithms. With a Ph.D. earned in 2003 and rich experience across academia and industry, she has spearheaded over 20 high-impact scientific research projects and collaborated with major enterprises such as CNOOC, Sinopec, and PetroChina. Her prolific contributions include 70+ published papers, 20+ patents, and numerous software copyrights. Her innovative work in ultrasound, radio frequency, and optical detection techniques has significantly advanced measurement technologies in the oil and gas sector.

Profile

Scopus

🎓 Early Academic Pursuits

Prof. Huiqin Jia embarked on her academic journey with a solid foundation in engineering and applied sciences. She earned her Ph.D. in 2003, demonstrating early excellence in scientific inquiry and dedication to solving real-world engineering problems. Her passion for technological innovation and multidisciplinary research guided her path toward applied instrumentation and process control — especially in fields closely tied to energy systems and industrial measurement technologies.

During her early academic years, Prof. Jia laid the groundwork for what would become a prolific research career. Her graduate and doctoral work shaped her interest in multiphase flow systems, a complex and essential area for oil, gas, and petrochemical industries.

🏢 Professional Endeavors

Following her doctoral studies, Prof. Jia gained extensive experience in industry, which significantly enriched her practical understanding of engineering challenges. Her transition to academia marked a new chapter, where she blended theoretical insight with field-based application.

As a professor at Xi’an Shiyou University, she has led more than 20 national, provincial, and ministerial research projects, including strategic collaborations with industrial leaders such as CNOOC Oilfield Services, Sinopec, and PetroChina. This strong academia-industry synergy has allowed her to translate scientific theories into commercially viable and technologically advanced products.

Her leadership roles also extend to academic peer review, currently serving as a reviewer for the Journal of Measurement and Control Technology, a testament to her respected authority in the field.

🔬 Contributions and Research Focus

Prof. Jia’s research primarily focuses on multiphase flow detection methods, a challenging area critical to process control in petroleum and chemical industries. She has developed groundbreaking technologies, including:

  • An ultrasound-based detection system for measuring flow characteristics in oil and gas extraction.

  • A radio frequency method for water content measurement.

  • An optical detection system for foam content analysis.

These innovations are not just academic; they are the basis for several instruments now used in industry to improve operational safety, accuracy, and efficiency.

Her contributions have resulted in:

  • Over 70 published research papers, many in high-impact SCI and Scopus-indexed journals.

  • More than 20 authorized invention patents.

  • Over 30 software copyrights.

  • 10 consultancy/industry projects, demonstrating applied impact.

  • One published book with ISBN.

  • 13 citation index entries, marking the influence of her work across scholarly networks.

🏅 Accolades and Recognition

Prof. Jia is widely recognized for her contributions to both science and society. She is a respected member of:

  • The China Petroleum Society

  • The China Instrument and Control Society

Her selection as a nominee for the Women Research Award is a reflection of her role as a trailblazer among women in engineering and instrumentation. Her continued contributions, especially in male-dominated technical fields, highlight her as a role model for aspiring women researchers.

🌍 Impact and Influence

The impact of Prof. Jia’s work goes beyond academic citations. Her innovative measurement tools have real-world utility, enabling better monitoring and control in energy production processes. Her close collaborations with China’s major oil enterprises demonstrate her role in bridging the gap between research and industry, influencing both technological advancement and economic development.

Her consultancy projects not only solve industry-specific problems but also foster long-term research alliances that enable sustainable innovation in the field of process measurement and automation.

🔗 Legacy and Future Contributions

Prof. Huiqin Jia’s legacy is already marked by a blend of academic excellence, industrial collaboration, and technological innovation. Looking forward, she is well-positioned to:

  • Expand research into AI-enhanced signal processing for multiphase systems.

  • Mentor the next generation of female scientists and engineers.

  • Further strengthen the link between academic research and practical industrial solutions.

Her work is setting a high standard for applied instrumentation research in China and internationally, offering innovative solutions to long-standing engineering challenges.

📄 Publication Top Notes

Author: H., Jia, F., Li, FeHuiqini, J., Zhao, Jiaxuan, Z., Sun, Zhimeng
Journal: Measurement
Year: 2025
Author: H., Jia, Huiqin, D., Wan, Dandan, J., Zhou, Jiacheng, Y., Wei, Yi
Journal: Measurement and
Year: 2024