Chenyuan Zhu | Environmental and Sustainable Materials | Research Excellence Award

Dr. Chenyuan Zhu | Environmental and Sustainable Materials | Research Excellence Award

Fudan University | China

Dr. Chenyuan Zhu is an accomplished researcher in chemistry and chemical engineering, recognized for impactful contributions to electrocatalysis, interfacial chemistry, and sustainable energy conversion. His research centers on the rational design of catalytic interfaces and active-site motifs to enable efficient electrochemical transformations, particularly carbon dioxide reduction and nitrate-to-ammonia conversion, which are critical for carbon neutrality and green nitrogen cycles. Dr. Zhu’s work systematically explores how bimetallic interfaces, crystallographic facets, defect engineering, and ionomer regulation influence reaction pathways, selectivity, and catalytic efficiency. By combining precise materials synthesis with advanced electrochemical characterization, his studies reveal structure–function relationships that govern multi-electron transfer reactions. Notably, his research on Au/Cu and Ag/Cu biphasic interfaces has demonstrated selective tandem conversion of CO₂ into value-added C₂+ alcohols, offering new strategies for carbon utilization. His investigations into Cu-based catalysts have provided fundamental insights into dynamic surface restructuring and product-specific active sites, significantly advancing the understanding of electrochemical CO₂ reduction mechanisms. In the area of electrochemical nitrogen conversion, Dr. Zhu has reported innovative approaches for nitrate-to-ammonia synthesis using tandem and biphasic catalytic systems, achieving enhanced activity and selectivity. These works contribute to sustainable ammonia production pathways that bypass energy-intensive Haber–Bosch processes. His broader research portfolio also includes contributions to electrochemical methanation, battery materials, and photocatalytic membranes for water treatment, reflecting a strong interdisciplinary foundation spanning catalysis, energy storage, and environmental remediation. Dr. Zhu’s scholarly output includes publications in leading journals such as Chem, ACS Catalysis, Journal of the American Chemical Society, Nano Letters, Journal of Materials Chemistry A, ChemSusChem, and Journal of Energy Chemistry. Several of these works are highly cited, featured as reviews or highlights, and published in top-tier journals, underscoring their scientific influence and originality. His research is characterized by methodological rigor, innovative interface engineering concepts, and clear relevance to global sustainability challenges. Through sustained contributions to fundamental catalysis science and applied electrochemical technologies, Dr. Zhu’s research advances the development of high-efficiency catalytic systems for clean energy and chemical production. His work continues to shape emerging strategies for carbon management, green ammonia synthesis, and next-generation electrochemical processes, positioning him as a significant contributor to modern catalysis and sustainable chemical engineering research.

Citation Metrics (Scopus)

800
700
600
500
400
300
200
100
50
0

Citations
685

Documents
26

h-index
13

Citations

Documents

h-index

View Scopus Profile

Featured Publications

Qiufan Wang | Sustainable Materials | Best Researcher Award | 13542

Dr. Qiufan Wang | Sustainable Materials | Best Researcher Award

Dr. Qiufan Wang, South-central minzu university, China

Dr. Qiufan Wang has made pioneering contributions to the advancement of aqueous multivalent-ion energy storage systems, particularly in zinc- and ammonium-ion batteries. His research integrates heterojunction engineering, interfacial tuning, and in-situ diagnostics to improve energy density, stability, and scalability of hybrid supercapacitors. With over 40 high-impact publications and 4 patents, his innovations have significantly influenced next-generation battery design. Dr. Wang actively collaborates across disciplines to prototype aqueous him as a key contributor in the field of sustainable electrochemical energy storage.

Author Profile

Scopus

Early Academic Pursuits

Dr. Qiufan Wang’s academic journey began with a strong foundation in materials science and electrochemistry, culminating in a Ph.D. inMaterialsElectrochemistry from the prestigious Huazhong University of Science and Technology. During his doctoral studies, he delved deeply into energy storage mechanisms, particularly focusing on battery materials and charge-transfer interfaces. His early work reflected a strong curiosity about sustainable energy solutions and an aptitude for innovation. With a passion for science and a growing interest in multivalent-ion batteries, Dr. Wang’s academic training laid the groundwork for a career devoted to advancing electrochemical storage technologies.

Professional Endeavors

Currently serving as an Associate Professor at South-Central Minzu University, Dr. Wang has quickly risen to prominence in the field of aqueous energy storage systems. His professional career is marked by a blend of academic rigor and applied innovation. Dr. Wang has taken on numerous leadership roles in multi-institutional research collaborations, working alongside scientists and engineers to design, synthesize, and test new materials for  batteries and supercapacitors. His work has contributed significantly to national research initiatives and academic development at his institution, where he is known for mentoring young researchers and supervising graduate students.

His research group focuses on hybrid energy storage devices that combine the best features of batteries and capacitors, thereby enabling the development of fast-charging, long-cycle, and safe energy storage systems suitable for next-generation electronics and grid applications.

Contributions and Research Focus

Dr. Wang’s research sits at the intersection of materials electrochemistry, interfacial engineering, and energy storage systems. His major contributions include the development of heterojunction-based electrode materials, particularly WS₂-MoS₂ hybrids, which exhibit enhanced charge transport and storage capacity in aqueous zinc- and ammonium-ion batteries.

He is also known for advancing dual-ion battery systems and micro-supercapacitors, employing in-situ spectroscopy and Density Functional Theory (DFT) to understand and optimize material behavior at the molecular level. His work has directly influenced the performance metrics of battery prototypes and has paved the way for safer, more efficient energy storage alternatives to traditional lithium-ion technology.

With over 40 publications in top-tier journals such as Advanced Functional Materials, ACS Nano, and Nano Energy, as well as four patents granted or under review, Dr. Wang’s research is widely cited and respected across the global scientific community.

Accolades and Recognition

Dr. Wang has earned national and institutional recognition for his cutting-edge contributions to battery science. He has been the recipient of multiple research grants, awards for academic excellence, and best paper honors. Although specific award names are undisclosed in the public domain, his publication and patent record reflect a high-impact career.

His research outputs are consistently published in Nature-indexed journals, and his expertise has led to collaborations with internationally renowned teams in both academia and industry. His position on several editorial and review boards underlines his influence and respect in the field of electrochemical materials.

Publications 

📘Revealing the Role of Topotactic Anion Exchange in the Robust Zn Ion Storage of CuS1-xTex – ACS Sustainable (2025)
📘Enhancing aqueous zinc-ion battery performance through a dual-mechanism strategy – Chemical Communications (2025)
📘Electronic Regulation Engineering of (NH4)0.25WO3 Anode Enables Fast and Stable Rocking-Chair Zinc-Ion Batteries – Nano Letters (2025)