Kaiyao Wu | Econometrics and Finance | Research Excellence Award

Prof. Dr. Kaiyao Wu | Econometrics and Finance | Research Excellence Award 

Shanghai University of International Business and Economics | China

Prof. Kaiyao Wu is a leading scholar in sustainable development economics and global value chain analysis, currently serving as a Professor at the School of Statistics and Data Science at the Shanghai University of International Business and Economics (SUIBE). He also holds several influential academic and professional roles, including Expert Committee Member and Digitalization Committee Member of the China Society of Foreign Trade and Economic Statistics, Director of the Global WiseTrade Digitalization Research Institute at SUIBE, and Evaluation Expert for the National Social Science Fund of China. With a rich academic background and extensive research experience, Prof. Wu has established himself as a prominent contributor to the fields of economic digitalization, global value-chain restructuring, energy–environment linkages, and sustainable development metrics. He holds a Ph.D. in Industrial Economics (2011) and an MBA (2007) from Shanghai Jiao Tong University, following a B.S. in Statistics from Xiamen University in 1995. After completing his doctoral studies at the Antai College of Economics and Management, he served on the faculty of Shanghai Finance University (now Lixin University of Accounting and Finance) from 2011 to 2019, while simultaneously completing postdoctoral research at Shanghai Jiao Tong University between 2012 and 2015. His international exposure includes a visiting scholar appointment at Colorado State University from 2017 to 2018, enriching his global research perspective. Since joining SUIBE in 2019, he has continued to advance impactful research and teaching. Prof. Wu has published more than 40 peer-reviewed papers in high-quality international and Chinese journals, including Energy Economics, Journal of Cleaner Production, Emerging Markets Finance and Trade, Environmental Science and Pollution Research, and Statistical Research, one of China’s top statistical journals. His publications address critical global issues such as carbon neutrality along global value chains, ESG impacts on corporate performance, energy efficiency, and the role of demographic shifts in shaping international production networks. He is also the author of six monographs and two textbooks that support both academic inquiry and practical applications, including The Global Value Chain Network of the Economy-Energy-Environment (3E) Coupling: Measurement and Application (2025) and Enterprise Data Processing with SAS EG (2023). Prof. Wu has led and contributed to major national research projects funded by the National Social Science Foundation of China, focusing on industrial correlation networks, dual-circulation system measurement, and advanced input–output analysis. His expertise further extends to statistical methods, global value chain statistics, market research, and data processing, and he teaches widely in these areas. Recognized for his outstanding mentorship, he has received multiple national-level instructor awards, underscoring his dedication to cultivating high-quality talent in statistics and data science.

Profile: Orcid

Featured Publications

Duan, J., Li, Y., Shi, W., & Wu, K. (2025). Beyond the linear: Green technology innovation, moderators, and GVC upgrading. SSRN. https://doi.org/10.2139/ssrn.5333724

Xuan, S., Wu, K., & Deng, J. (2024). The effect of producer service agglomeration externalities on urban green innovation efficiency in China. Heliyon, 10, e25085. https://doi.org/10.1016/j.heliyon.2024.e25085

Wu, K., Chen, F., Anwar, S., & Liao, L. (2024). The impact of population aging on a country’s global value chain position: Unraveling the dynamics and mechanisms. Emerging Markets Finance and Trade, 60(?), 1–?. https://doi.org/10.1080/1540496X.2023.2300636
(Note: Volume/issue/page numbers not provided—fill in if available.)

Wu, K., Sun, C., Zhang, J., & Duan, J. (2023). Carbon neutrality along the global value chain: An international embedded carbon network analysis. Environmental Science and Pollution Research, 30, 122051–122065. https://doi.org/10.1007/s11356-023-30680-9

Du, L., Wei, M., & Wu, K. (2023). Information technology and firm’s green innovation: Evidence from China. Environmental Science and Pollution Research, 30, ???–???. https://doi.org/10.1007/s11356-023-29320-z
(Page numbers not provided—fill in if needed.)

Xuan, S., Wu, K., & Deng, J. (2023). The effect of producer service agglomeration externalities on urban green innovation efficiency in China. SSRN. https://doi.org/10.2139/ssrn.4502877

Tiezhen Ren | Advanced Materials Engineering | Research Excellence Award

Prof. Tiezhen Ren | Advanced Materials Engineering | Research Excellence Award

Xinjiang university | China

Prof. Dr. Tie-Zhen Ren is a distinguished Professor at the School of Chemical Engineering, Xinjiang University, China. She obtained her Ph.D. in Inorganic Materials Chemistry from the University of Namur (FUNDP), Belgium, where she completed a thesis on hierarchically nanoporous functional materials under the supervision of Prof. Bao-Lian Su. Prior to her doctorate, she studied Polymer Engineering at Tianjin Institute of Technology and later pursued graduate studies in Plant Protection at Anhui Agricultural University. Her academic career includes serving as a Professor at Hebei University of Technology (2007–2021), conducting postdoctoral research at Stockholm University in Sweden, and working as a visiting researcher at the City College of New York. Prof. Ren’s research focuses on the synthesis and characterization of nanostructured materials, mesoporous silica and metal oxide systems, photocatalysis, environmental materials, crystalline porous germanium oxides, catalyst development, and biomass-derived functional materials. She has extensive experience with advanced characterization techniques such as TEM, SEM-EDX, XRD, FT-IR, and electrochemical systems, and actively teaches courses such as General Chemistry, Chemical Engineering Principles, Catalysis, and Technical English. Prof. Ren has been the recipient of numerous prestigious honors, including the China National Scholarship for Outstanding Self-Financed Students Abroad, the Tianchi Talent Leader Award, and the Tianjin Natural Science Award. She has led multiple national and international research projects funded by the National Natural Science Foundation of China, Ministry of Education, and Xinjiang Autonomous Region, focusing on photocatalysis, nanocatalyst design, biomass valorization, and environmental remediation. She has authored and co-authored more than 80 peer-reviewed scientific publications across high-impact journals and continues to contribute to research in sustainable chemistry, catalysis, and materials science. She is fluent in English and Chinese and has basic proficiency in French.

Profiles: Scopus | Orcid

Featured Publications

Huang, S., Zhang, H., Zhang, T., Li, C., Ren, T., & He, Z. (2025). High‐efficiency exfoliation of atomically‐thin non‐Van der Waals quasicrystal nanosheets with enhanced electrocatalytic oxygen evolution reaction performance. Small Methods. https://doi.org/10.1002/smtd.202501162


Song, Z.-H., Muhammad, I., Ren, T.-Z., Abulizi, A., Okitsu, K., Li, H.-R., & Zhang, X.-J. (2025, March 27). Preparation of Al₂O₃ nanoparticles via fluidized roasting and their application in the pyrolysis of spent mulching film for hydrocarbon production. ACS Sustainable Resource Management. https://doi.org/10.1021/acssusresmgt.4c00436


Han, J., Sun, L., Ulbricht, M., Fischer, L., Zhang, G., Gao, W., Lv, L., Ren, T., Liu, X., & Ren, Z. (2025). Sulfite enhanced permanganate/Fe(II) moderate oxidation coagulation for the treatment of algae-laden water: Performance and mechanisms. Chemical Engineering Journal. https://doi.org/10.1016/j.cej.2024.159084


Fu, H., Bai, H., Abulizi, A., Okitsu, K., Maeda, Y., Ren, T., & Wang, S. (2024). Surfactant-enhanced ZnOₓ/CaO catalytic activity for ultrasound-assisted biodiesel production from waste cooking oil. Reaction Chemistry & Engineering. https://doi.org/10.1039/D3RE00306J


Cui, M.-J., Li, S.-S., Ren, T., Abulizi, A., & Nulahong, A.-S. (2024). Boosting BaTi₄O₉ photocatalytic H₂ evolution activity by functionalized CuNi alloy. Journal of Photochemistry and Photobiology A: Chemistry. https://doi.org/10.1016/j.jphotochem.2024.115834


Cui, M.-J., Muhammad, I., Feng, J., & Ren, T. (2024). Isopropanol assisted preparation of α–Al₂O₃ nanoparticles and its surface charge investigation. Solid State Sciences. https://doi.org/10.1016/j.solidstatesciences.2024.107706

Thierry Ngouana Kammalac | Medical Mycology | Best Research Article Award

Dr. Thierry Ngouana Kammalac | Medical Mycology | Best Research Article Award

Laboratoire Sion| Cameroon

Dr. Ngouana Kammalac Thierry is an accomplished Cameroonian biochemist and medical mycologist with extensive experience in microbial diagnostics, infectious disease research, and biotechnology innovation. He holds a PhD in Biochemistry and Health Sciences (2014), jointly awarded by the University of Montpellier in France and the University of Yaoundé I in Cameroon, where his doctoral work focused on the genetic diversity of Cryptococcus and Candida isolates in HIV-positive patients and their susceptibility to antifungal therapies and medicinal plant extracts. He also holds a Master’s degree in Biochemistry (2009) from the University of Yaoundé I. Dr. Ngouana has built an exceptional career at the intersection of laboratory science, diagnostic technology, and academic instruction. As Director of Zion Biomedical Corporation since 2023, he leads the development and large-scale production of innovative biomedical products, including lateral flow immunochromatographic diagnostic tests, microbial culture media, and specialized staining dyes, contributing to improved diagnostic capacities in the region. Since 2016, he has also served as Director of Zion Medical Laboratory, where he oversees scientific development, clinical diagnostics, and antimicrobial resistance surveillance. His laboratory plays a crucial role in cryptococcal meningitis diagnosis among HIV-infected patients, the establishment of microbial standard operating procedures (SOPs), and the strengthening of Cameroon’s diagnostic infrastructure. Alongside his laboratory leadership, Dr. Ngouana has been an associate lecturer at the Catholic University and the Protestant University of Central Africa since 2015, teaching courses in medical mycology, biochemistry, and bacteriology. He has a strong publication record, contributing to high-impact research on Candida genetic diversity, antifungal resistance, pathogenic yeast epidemiology, and bioactive compounds from medicinal plants. His work has appeared in reputable journals such as Brazilian Journal of Microbiology, American Journal of Microbiological Research, Mycoses, Journal de Mycologie Médicale, Medical Mycology, and Journal of Medical Microbiology. Notable contributions include studies revealing novel genotypes of Candida species, antifungal susceptibility patterns in Africa and Europe, and plant-derived compounds with potent antifungal activity. Dr. Ngouana’s expertise spans molecular diagnostics, PCR, microscopy, microbial culture, infection control, and data analysis, supported by strong research methodology and teamwork competencies. He is an active member of the FAILSAFE Medical Mycology Network, the Cameroonian Society of Microbiology, and the French Society of Medical Mycology, reflecting his engagement in global scientific collaboration and capacity building in medical mycology.

Profiles: Scopus | Orcid

Featured Publications

Ngouana, T. K., Dougue, A. N., Ngouana, V., Tsayem, R. F., Mahamat, Y. H., Boyom, F. F., & Ranque, S. (2025). Vulvo-vaginal candidiasis at the Zion Clinical Laboratory (Yaounde-Cameroon): Risk factors, species distribution and antifungal susceptibility testing. Journal of Medical Mycology,

Kountchou, C. L., Kabtani, J., Dougue, A. N., Nangwat, C., Ekpo, A. I., Ngonde, M. C., Mogo, C. B., Dzoyem, J. P., Ranque, S., & Ngouana, T. K. (2025). Candida krusei (Pichia kudriavzevii) multilocus sequence typing and antifungal susceptibility profile in Cameroon. Brazilian Journal of Microbiology.

Abu Farzan Mitul | Engineering | Best Researcher Award

Dr. Abu Farzan Mitul | Engineering | Best Researcher Award

Leidos | United States

Dr. Abu Farzan Mitul is an accomplished researcher and educator specializing in opto-electronic device fabrication, fiber optic sensing technologies, and nanostructured thin-film materials. His research bridges the intersection of photonics, materials science, and advanced sensing systems — contributing to innovations that enhance environmental monitoring, industrial automation, and biomedical diagnostics. Dr. Mitul earned his Ph.D. in Electrical and Computer Engineering from the University of Texas at El Paso (UTEP), USA, where he designed and developed advanced fiber Bragg grating sensors and thin-film photonic devices for multi-parameter sensing applications. His earlier academic training includes a B.Sc. and M.Sc. in Applied Physics, Electronics, and Communication Engineering from the University of Dhaka, Bangladesh. Throughout his career, Dr. Mitul has collaborated with leading U.S. research institutions and agencies, including the Department of Energy (DOE), Department of Defense (DoD), and NASA, focusing on next-generation optoelectronic and energy-efficient sensing systems. His extensive publication record spans high-impact journals and international conferences in photonics, sensor technology, and materials characterization. In addition to his research, Dr. Mitul has served as a faculty member and laboratory instructor, mentoring undergraduate and graduate students in electronics, photonics, and experimental physics. He is passionate about advancing interdisciplinary research in fiber optic sensing, MEMS/NEMS devices, photonic integrated systems, and nanotechnology-driven device engineering. Dr. Mitul continues to explore innovative pathways toward miniaturized, high-sensitivity photonic systems with applications across environmental, aerospace, and biomedical fields — aligning cutting-edge materials research with sustainable technological development.

Profiles: Orcid | Google Scholar | Linkedin

Featured Publications

Adhikari, N., Dubey, A., Khatiwada, D., Mitul, A. F., Wang, Q., Venkatesan, S., & Qiao, Q. (2015). Interfacial study to suppress charge carrier recombination for high efficiency perovskite solar cells. ACS Applied Materials & Interfaces, 7(48), 26445–26454. https://doi.org/10.1021/acsami.5b08343

Rana, G. M. S. M., Khan, A. A. M., Hoque, M. N., & Mitul, A. F. (2013, December). Design and implementation of a GSM based remote home security and appliance control system. In 2013 2nd International Conference on Advances in Electrical Engineering (ICAEE) (pp. 291–295). IEEE. https://doi.org/10.1109/ICAEE.2013.6750340

Khatiwada, D., Venkatesan, S., Adhikari, N., Dubey, A., Mitul, A. F., Mohammad, L., … & Qiao, Q. (2015). Efficient perovskite solar cells by temperature control in single and mixed halide precursor solutions and films. The Journal of Physical Chemistry C, 119(46), 25747–25753. https://doi.org/10.1021/acs.jpcc.5b08667

Mitul, A. F., Mohammad, L., Venkatesan, S., Adhikari, N., Sigdel, S., Wang, Q., … & Qiao, Q. (2015). Low temperature efficient interconnecting layer for tandem polymer solar cells. Nano Energy, 11, 56–63. https://doi.org/10.1016/j.nanoen.2014.10.030

Venkatesan, S., Ngo, E. C., Chen, Q., Dubey, A., Mohammad, L., Adhikari, N., … & Qiao, Q. (2014). Benzothiadiazole-based polymer for single and double junction solar cells with high open circuit voltage. Nanoscale, 6(12), 7093–7100. https://doi.org/10.1039/C4NR00606H

Islam, M. M., Rafi, F. H. M., Mitul, A. F., Ahmad, M., Rashid, M. A., & Malek, M. F. B. A. (2012, May). Development of a noninvasive continuous blood pressure measurement and monitoring system. In 2012 International Conference on Informatics, Electronics & Vision (ICIEV) (pp. 695–699). IEEE. https://doi.org/10.1109/ICIEV.2012.6317425

 

Bramhaiah Kommula | Materials Science | Best Researcher Award

Assist Prof Dr. Bramhaiah Kommula | Materials Science | Best Researcher Award

Assist Prof Dr. Bramhaiah Kommula | St. Joseph’s University Bangalore | India

Dr. Bramhaiah Kommula is an accomplished researcher and academic currently serving as an Assistant Professor in the Department of Chemistry at St. Joseph’s University, Bengaluru. His research embodies a multidisciplinary approach at the intersection of nanomaterials, photochemistry, and sustainable energy, with a focus on developing advanced functional luminescent nanomaterials for energy conversion, storage, and environmental remediation. Dr. Kommula earned his Ph.D. in Chemistry from Mangalore University in 2018 under the supervision of Dr. Neena S. John at the Centre for Nano and Soft Matter Sciences (CeNS), Bengaluru, where he investigated the “Synthesis and Properties of Graphene-Based Hybrid Materials Employing Chemical Routes.” Following his doctoral studies, Dr. Kommula pursued postdoctoral research at prestigious institutes including IISER Berhampur (2019–2022) with Dr. Santanu Bhattacharyya and IISER Mohali (2022–2024) with Prof. Ujjal K. Gautam. His postdoctoral work focused on the design and engineering of carbon-based nanostructures and their photocatalytic applications in solar fuel generation, hydrogen evolution, and selective organic transformations. He also contributed to the development of metal-free, waste-derived carbon dots and explored their photophysical properties for green hydrogen production, CO₂ reduction, and photoinduced organic catalysis. Dr. Kommula’s current research at St. Joseph’s University integrates nanomaterial synthesis, photophysical studies, and energy applications, emphasizing sustainable approaches to convert plastic waste into high-value carbon dots (CDs) and utilize them as efficient metal-free photocatalysts. Dr. Kommula has also authored several book chapters published by Springer Nature and holds a provisional Indian patent on graphitic carbon dots. Dr. Kommula’s research excellence has been acknowledged through several prestigious fellowships, including Institute Postdoctoral Fellowships from IISER Mohali and IISER Berhampur, and DST Senior and Junior Research Fellowships. His scientific leadership is evident in his ongoing supervision of three Ph.D. students and his submission of major national funding proposals under ANRF and DST schemes aimed at developing sustainable photocatalytic systems for hydrogen and value-added chemical production. Overall, Dr. Bramhaiah Kommula’s research exemplifies innovation-driven science that bridges materials chemistry and renewable energy technologies. His long-term goal is to pioneer eco-friendly nanomaterials that transform environmental waste into useful resources, contributing significantly toward achieving sustainable energy solutions and carbon-neutral technologies for the future.

Profiles: Orcid | Google Scholar

Featured Publications

Kommula, B., & Sriramadasu, V. K. (2025). Room temperature red phosphorescence enabled by alkali treatment in niobium carbide-derived carbon dots. Journal of Luminescence, 274, 121591. https://doi.org/10.1016/j.jlumin.2025.121591

Roy, R. S., Sil, S., Mishra, S., Banoo, M., Swarnkar, A., Kommula, B., De, A. K., & Gautam, U. K. (2025). Layer width engineering in carbon nitride for enhanced exciton dissociation and solar fuel generation. ACS Materials Letters, 7(4), 1385–1393.

Mandal, R., Biswal, J. R., Kommula, B., & Bhattacharyya, S. (2025). 2,2′:5′,2″:5″,2‴‐Quaterthiophene nanoparticles and single-walled CNT composite: An organic nanohybrid for solar H₂ production and simultaneous photoreformation of plastic wastes. ChemCatChem, 17(3), e202500307.

Kommula, B., & Gautam, U. K. (2025). A two-step strategy for residue-free chemical conversion of plastic waste to carbon dots: Upscaling and solvent recycling prospects. Carbon, 234, 119960.

Dutta, B., Kommula, B., Kanwar, K., Gautam, U. K., & Sarma, D. (2025). Oxygen-harvesting carbon dot photocatalysts for ambient tandem oxidative synthesis of quinazolin-4(3H)-ones. Green Chemistry, 27(1), Article D5GC00962F.

Kommula, B., Kanwar, K., & Gautam, U. K. (2024). Waste polyethylene-derived carbon dots: Administration of metal-free oxidizing agents for tunable properties and photocatalytic hyperactivity. ACS Applied Materials & Interfaces, 16(31), 39470–39481.

Jinhua Zhu | Separation Sciences | Best Researcher Award

Prof Dr. Jinhua Zhu | Separation Sciences | Best Researcher Award 

Prof Dr. Jinhua Zhu | Henan University | China

Prof. Dr. Jinhua Zhu, a distinguished Professor and Doctoral/Master’s Supervisor at Henan University, is recognized as an Outstanding Youth of Henan Province. Her research centers on life separation science and the theory and application of chromatography technology, with impactful contributions in active component screening and functional drug delivery systems. She has published extensively in leading journals and has led numerous national and provincial research projects, advancing both theoretical and applied aspects of analytical chemistry.

Author Profile
Orcid

Education

Prof. Dr. Jinhua Zhu began her academic journey with a strong foundation in chemistry, cultivating an early passion for scientific inquiry and innovation. Her undergraduate studies provided her with a comprehensive understanding of core chemical principles, analytical thinking, and practical laboratory skills. This academic base ignited her curiosity in analytical chemistry, encouraging her to pursue advanced research in the field. As she progressed into doctoral studies, she immersed herself deeply in the study of separation science, chromatography, and applied chemical methodologies. Her doctoral training not only sharpened her research abilities but also nurtured her interest in solving real-world challenges related to drug discovery, environmental monitoring, and biochemical analysis. These formative years set the stage for her emergence as a respected academic, shaping her professional identity and building the foundation for her future contributions.

Experience

After completing her academic preparation, Prof. Zhu embarked on a professional journey that showcased her dedication to both teaching and research. She began her career in higher education, taking on roles that balanced classroom instruction with laboratory exploration. Her teaching portfolio has grown to include key undergraduate and graduate courses such as Instrumental Analysis, Separation Technology, and Modern Environmental Analysis Technology. Through these courses, she has not only transferred technical knowledge but also instilled scientific curiosity and critical problem-solving skills in her students. Alongside teaching, she pursued postdoctoral research, gaining deeper insights into advanced chemical analysis and international exposure through academic exchange programs. Her visiting scholarship abroad further broadened her scientific vision, allowing her to connect with global research trends and establish meaningful collaborations. Over time, her professional trajectory advanced steadily, reflecting her commitment to both academic excellence and innovative research leadership.

Research Focus

At the core of Prof. Zhu’s work lies her extensive contribution to life separation science and chromatography technology. Her research delves into both theoretical advancements and practical applications, making her work highly impactful in modern analytical chemistry. She has been particularly dedicated to the screening of bioactive components with hypoglycemic and anti-inflammatory properties, which has significant implications for therapeutic drug development. Another important dimension of her research is the construction and application of functional drug delivery systems, aimed at enhancing the effectiveness and precision of medical treatments. By combining fundamental chemical principles with applied research goals, Prof. Zhu bridges the gap between laboratory research and societal needs. Her publications in respected journals such as Separation and Purification Technology, Analytica Chimica Acta, Colloids and Surfaces B, and Talanta reflect her ability to contribute knowledge that is both novel and widely recognized in the scientific community.

Accolades and Recognition

Prof. Zhu’s academic journey has been marked by numerous awards, grants, and recognitions that highlight her leadership in chemistry and separation science. She has successfully led a variety of funded research projects, ranging from national-level grants to provincial programs that underscore her innovative contributions. Being recognized as an Outstanding Youth of Henan Province reflects not only her academic achievements but also her role as a model for emerging researchers in her region. These honors demonstrate her ability to consistently produce high-quality research, mentor the next generation of chemists, and push the boundaries of analytical methodologies. Her leadership in securing key projects at both national and provincial levels stands as testimony to her expertise, trustworthiness, and scientific vision.

Impact and Influence

The influence of Prof. Zhu extends beyond academic publications and research projects—her impact resonates within the broader scientific community and in real-world applications. Her work in drug delivery systems and natural product analysis offers pathways toward improved medical therapies, addressing health challenges such as diabetes and inflammation-related diseases. By developing innovative chromatography technologies, she has provided researchers with more efficient and precise analytical tools that can be applied in pharmaceutical, environmental, and food sciences. As a mentor and teacher, she has inspired numerous students, cultivating a culture of curiosity, discipline, and innovation in scientific practice. Her dual role as a researcher and educator ensures that her influence is both immediate in advancing scientific frontiers and long-lasting through the students she continues to guide.

Publication

Dual-monomer magnetic molecularly imprinted polymer for highly efficient luteolin separation from natural products.

Author: Yunfeng Yuan, Xiaoqi Liu, Chenjia Jiang, Haodong Zhou, Jinhua Zhu, Abdelhadi El Jaouhari, Xiuhua Liu, Minghua Lu*
Journal: Separation and Purification Technology,
Year: 2025

Three-dimensional ordered macro-microporous ZIF-8-α-Glu microreactors for α-glucosidase inhibitors screening from green tea.

Author: Xiaoqi Liu, Haodong Zhou, Chenjia Jiang, Yunfeng Yuan, Jinhua Zhu, Minghua Lu*
Journal: Talanta
Year: 2025

Phenylboronic acid functionalized magnetic ferroferric oxide nanoparticles and capillary electrophoresis for efficient isolation of flavonoid compounds from leaves of Lonicera japonica Thunb.

Author: Chenjia Jiang, Xiaoqi Liu, Yunfeng Yuan, Haodong Zhou, Jinhua Zhu, Minghua Lu*
Journal: Chromatography A,
Year: 2025

Conclusion

Prof. Dr. Jinhua Zhu stands as a leading figure in the field of analytical and separation science, with her research bridging theoretical chemistry and real-world biomedical applications. Through her pioneering work in chromatography, bioactive compound screening, and functional drug delivery systems, she has advanced both scientific knowledge and practical healthcare solutions. Her impactful publications, successful research leadership, and dedication to mentoring young scholars highlight her as a role model in academia. With continued innovation and global collaborations, Prof. Zhu’s contributions are set to leave a lasting legacy, shaping the future of separation science and strengthening its role in improving human health and well-being.