Muhammad Yar Khan | Advanced Materials | Best Researcher Award

Prof . Muhammad Yar Khan | Advanced Materials | Best Researcher Award

Prof . Muhammad Yar Khan | Qilu institute of Technology | China 

Dr. Hafiz Muhammad Yar Khan is an Associate Professor of Physics at Qilu Institute of Technology, China, with over a decade of teaching and research experience. He holds a Ph.D. in Materials Science & Engineering from Zhejiang University, China, where his research focused on density functional theory (DFT) modeling of 2D magnetic and energy storage materials. His work spans computational materials science, optoelectronics, spintronics, and nanomaterials, resulting in multiple publications in high-impact journals. Dr. Khan has also been awarded prestigious fellowships, including the Chinese Government Scholarship and Korea’s BK21 program, and has actively collaborated with international universities and research centers.

Author Profile

Scopus

Education

From the beginning of his academic journey, Dr. Hafiz Muhammad Yar Khan demonstrated an exceptional passion for science, particularly in the field of physics and materials science. His early education provided him with a strong foundation in core areas such as quantum mechanics, solid-state physics, nuclear physics, and mathematical methods. Driven by curiosity, he quickly became drawn toward advanced computational approaches to understanding the physical world. His postgraduate research immersed him in the study of perovskite-type oxides through first-principles modeling, sparking a lifelong dedication to theoretical and computational material science. His determination to explore the hidden properties of materials led him to pursue a doctorate in materials science and engineering, where he specialized in density functional theory and advanced computational modeling. This period marked the beginning of his transformation from a passionate student into a dedicated researcher and scholar.

Experience

Dr. Khan’s professional journey has been shaped by diverse experiences in academia and research, where he has served as a lecturer, researcher, and academic leader. He has contributed significantly to physics education, teaching a wide range of subjects to undergraduate and postgraduate students, and mentoring young scholars in their academic pursuits. Beyond classroom teaching, he has undertaken important administrative responsibilities, participating in academic councils, admission committees, and organizing student-focused events that enriched institutional culture. His academic career also expanded internationally, as he collaborated with multiple universities and research institutes across China, Korea, the United States, and the Middle East. These professional experiences reflect not only his commitment to advancing knowledge but also his dedication to building bridges between research communities worldwide.

Research Focus

At the heart of Dr. Khan’s academic profile lies his deep engagement with computational materials science. His research primarily focuses on first-principles studies, density functional theory modeling, and the exploration of novel two-dimensional materials. He has made significant contributions to understanding the electronic, magnetic, and optical properties of advanced materials, including transition metal dichalcogenides, van der Waals heterostructures, and defect-engineered nanostructures. His work provides key insights into the design of new materials for energy storage, optoelectronic devices, spintronics applications, and advanced battery technologies. By applying computational tools such as VASP, WIEN2k, and FLAPW, he has offered predictive models that guide experimental research and future technological applications. His publications in respected international journals highlight not only his technical expertise but also his ability to advance knowledge in fields of global importance, such as sustainable energy materials and nanotechnology.

Accolades and Recognition

Dr. Khan’s academic journey has been supported and recognized through numerous awards, fellowships, and honors. He was awarded the prestigious Chinese Government Scholarship for his doctoral studies, which enabled him to pursue advanced research at one of the world’s leading universities. His contributions have also been acknowledged through competitive fellowships such as the Brain Korea 21 (BK21) and Pioneer Research Center Program, reflecting his international standing as a promising researcher. Beyond scholarships, his role as a Hafiz-ul-Quran adds a unique dimension to his profile, combining spiritual dedication with intellectual achievement. His international collaborations and invitations to symposia, workshops, and research forums further underscore his growing recognition as a leading researcher in computational and materials science.

Impact and Influence

The impact of Dr. Khan’s work extends beyond publications and citations. His teaching career has touched the lives of countless students, many of whom have gone on to pursue advanced studies and careers in physics and materials science. His collaborative projects across countries demonstrate his commitment to knowledge exchange and global research cooperation. His insights into two-dimensional materials and energy applications directly contribute to fields addressing some of today’s most pressing challenges, such as renewable energy storage, efficient optoelectronic devices, and sustainable materials design. By combining teaching, research, and mentorship, he continues to inspire both students and colleagues to explore new frontiers in science.

Publications

A First-Principal Study of Monolayer Transition Metal Carbon Trichalcogenides.

Author: Muhammad Yar Khan, Yan Liu, Tao Wang, Hu Long, Miaogen Chen, and Dawei Gao
Journal: Superconductivity and Novel Magnetism
Year: 2021

Ferromagnetism of Ni and I co-doped CdS: A first-principles study

Author: Muhammad Yar Khan, Shengdan Tao, Haifei Wu,Qing Liao,Yilian Dai, Asif Ilyas, Jing Zhang, Miaogen Chen, Yunhao Lu
Journal: Physics
Year: 2023

Fabrication of nanofiltration membrane with enhanced water permeability and dyes removal efficiency using tetramethyl thiourea-doped reduced graphene oxide.

Author: Sehrish Qazi,Huma Shaikh,Amber R. Solangi, Madeeha Batool, MuhammadYar Khan, Nawal D. Alqarni, Sarah Alharthi and Nora Hamad Al-Shaalan
Journal: Materials Science
Year: 2024

Conclusion

Dr. Hafiz Muhammad Yar Khan represents a rare blend of academic excellence, research innovation, and educational leadership. His journey from early studies in physics to advanced computational modeling of novel materials reflects unwavering dedication to knowledge and discovery. Through his teaching, research, and collaborations, he has contributed to solving challenges in energy, optoelectronics, and nanotechnology, while also inspiring the next generation of scientists. With a strong record of publications, international recognition, and a clear vision for the future, Dr. Khan stands as a distinguished scholar whose work continues to shape both the academic community and the broader scientific world. His legacy lies not only in his groundbreaking research but also in the lives he influences through mentorship, global collaborations, and a commitment to advancing science for societal benefit.

Qingshan Pan | Materials Science | Best Researcher Award

Dr. Qingshan Pan | Materials Science | Best Researcher Award 

Dr. Qingshan Pan | Jiangxi Science & Technology Normal University | China

Dr. Qingshan Pan, Professor at Jiangxi Science & Technology Normal University, is a distinguished researcher specializing in DNA nanomaterials, MOF nanozyme materials, and self-assembled nano/nanogel systems derived from traditional Chinese medicine components. His work focuses on developing antibacterial and anti-inflammatory nanomedicines, advanced wound dressings, and targeted tumor diagnostics and therapies. A recipient of funding from the National Natural Science Foundation of China and multiple provincial grants, Dr. Pan has authored over 20 SCI-indexed publications in leading journals such as Chemical Engineering Journal and ACS Applied Materials & Interfaces, contributing significantly to nanomedicine and precision therapeutics research.

Author Profile

Scopus

Education

Dr. Qingshan Pan’s academic journey began with a strong foundation in chemical engineering, earning his bachelor’s degree from the Department of Chemical Engineering and Technology, Central South University. His early studies nurtured a keen interest in material science, nanotechnology, and their biomedical applications. Driven by a passion for innovation, he pursued doctoral studies at the State Key Laboratory of Chemical Biology and Measurement, Hunan University, specializing in Analytical Chemistry, and graduated with his Ph.D. His doctoral training provided him with advanced expertise in nanoscale materials design, synthesis, and functionalization, particularly for healthcare applications. These formative years equipped him with a multidisciplinary skill set that integrates chemistry, biology, and materials science—an essential foundation for his later breakthroughs in nanomedicine.

Experience

Currently serving as a Professor at Jiangxi Science & Technology Normal University, Dr. Pan is actively involved in teaching, mentoring, and leading high-impact research projects. He has successfully secured funding from prestigious organizations, including the National Natural Science Foundation of China, the Jiangxi Province Outstanding Young Scholars Fund, the Jiangxi Province Natural Science Foundation, and the Education Department. Through these roles, he has developed innovative research programs that bridge fundamental nanoscience with real-world biomedical solutions. Beyond academia, Dr. Pan contributes to the growth of the scientific community by engaging in collaborations with other researchers, fostering interdisciplinary partnerships, and promoting the application of nanotechnology in medicine and healthcare.

Research Focus

Dr. Pan’s research portfolio is broad yet deeply specialized, encompassing DNA nanomaterials, metal–organic framework (MOF) nanozyme materials, and self-assembled nano/nanogel systems derived from traditional Chinese medicine components. These systems have been engineered for antibacterial and anti-inflammatory nanomedicines, advanced antibacterial dressings, and precision tumor diagnosis and therapy.

His innovative approach to combining traditional Chinese medicine with cutting-edge nanotechnology has led to the development of hybrid nanomaterials that exhibit unique bioactive properties, enhanced stability, and targeted delivery capabilities. By integrating DNA nanotechnology with MOF-based nanozymes, his work addresses key challenges in biomedical applications, such as targeted drug release, controlled therapeutic activity, and dual-function systems capable of both diagnosis and treatment. These contributions not only advance the frontiers of nanomedicine but also provide new strategies for combating bacterial infections, reducing inflammation, and improving cancer therapy outcomes.

Award and Recognition

Dr. Pan’s scientific achievements are reflected in his impressive publication record, with over 20 SCI-indexed papers in internationally renowned journals, including Chemical Engineering Journal and ACS Applied Materials & Interfaces. His work is recognized for its high citation value, innovative experimental design, and significant potential for translational application in clinical medicine. Receiving funding from multiple prestigious agencies underscores his reputation as a leading figure in nanomedicine research. His role as a principal investigator in national and provincial projects highlights his ability to conceive, lead, and execute complex research initiatives that meet rigorous scientific standards.

Impact and Influence

The impact of Dr. Pan’s research extends far beyond academic citations. His nanomedicine platforms have the potential to revolutionize how bacterial infections, inflammation, and tumors are diagnosed and treated. The antibacterial dressings developed in his lab could play a crucial role in preventing hospital-acquired infections and promoting faster wound healing. His tumor-targeted nanotherapies are paving the way for minimally invasive and highly specific cancer treatments, reducing side effects while improving efficacy. Furthermore, by integrating bioactive compounds from traditional Chinese medicine into modern nanocarriers, Dr. Pan is contributing to a new paradigm in personalized and culturally rooted healthcare innovation.

Publications 

Transition Metal Sulfide-Based Nanozymes: From Design Strategies to Applications in Chronic Wound Healing

Author: Yuying Zhang, Renxi Li, XianXi Li, Pengwu Zheng, Wufu Zhu, Cunpeng Nie, Qingshan Pan
Journal: ACS Applied Nano Materials
Year: 2025

Review of Metal-Polyphenol Self-Assembled Nanoparticles: Synthesis, Properties, and Biological Applications in Inflammatory Diseases.

Author: Li Wan, Shizhe Li, Jiawei Du, Anqi Li, Yujie Zhan, Wufu Zhu, Pengwu Zheng, Dan Qiao, Cunpeng Nie, Qingshan Pan
Journal: ACS Biomaterials Science & Engineering
Year: 2025

Photothermally Enhanced Cascaded Nanozyme-Functionalized Black Phosphorus Nanosheets for Targeted Treatment of Infected Diabetic Wounds.

Author: Chunping Wen, Yan Zhang, Luogen Lai, Xuan Zhang, Yijun Liu, Qiuyan Guo, Rujue Peng, Yating Gao, Xufei Zhang, Yan He, Shan Xu, Dan Qiao, Pengwu Zheng, Qingshan Pan, Wufu Zhu
Journal: Advanced Healthcare Materials
Year: 2025

Conclusion

Dr. Qingshan Pan’s remarkable journey from his foundational studies in chemical engineering to his pioneering research in analytical chemistry and nanomedicine reflects a career marked by curiosity, dedication, and innovation. His expertise in designing DNA nanomaterials, MOF nanozyme platforms, and self-assembled nanogels bridges the gap between advanced material science and practical biomedical applications, addressing critical challenges in antibacterial, anti-inflammatory, and tumor-targeted therapies. Through his leadership in prestigious national and provincial research projects, his extensive scholarly publications, and his commitment to translating research into impactful solutions, Dr. Pan has firmly established himself as a trailblazer in interdisciplinary science. His work not only elevates the academic standing of Jiangxi Science & Technology Normal University but also contributes meaningfully to global advancements in nanotechnology and precision medicine. As his career progresses, Dr. Pan is poised to expand his influence, inspiring future scientists while continuing to innovate at the intersection of chemistry, biology, and medicine.

Xiaoyan Song | Cermet materials | Best Researcher Award | 13225

Prof. Dr. Xiaoyan Song | Cermet materials | Best Researcher Award

Prof. Dr. Xiaoyan Song, Beijing University of Technology, China

Professor Xiaoyan Song is a distinguished faculty member at the College of Materials Science and Engineering, Beijing University of Technology. She leads the Metallic Nanomaterials and Computational Materials Science group and serves as the Deputy Director of the Key Laboratory of Advanced Functional Materials under China’s Ministry of Education. Her research focuses on the design, preparation, and characterization of metallic nanomaterials, including rare-earth materials, hard metals, and cermets. She has published over 300 peer-reviewed papers and holds more than 60 authorized patents, some of which have been industrialized into high-grade engineering products. Professor Song has received numerous honors, including the Humboldt Fellowship and the China National Science Fund for Distinguished Young Scholars. She also serves as an Associate Editor for the International Journal of Refractory Metals and Hard Materials.

Profile

Orcid

Scopus

🎓 Early Academic Pursuits

Professor Xiaoyan Song embarked on her academic journey at the University of Science and Technology Beijing, where she earned her Ph.D. in 1999. Her research in materials science began with a strong foundation in metallurgy and advanced composites, laying the groundwork for her future contributions to the field. Her early work was characterized by a keen interest in the microstructural properties of metallic materials, which would later define her professional focus. Following her Ph.D., she expanded her horizons internationally, securing a prestigious Humboldt Fellowship to conduct postdoctoral research at Darmstadt University of Technology in Germany from 2000 to 2003. This experience provided her with advanced training in computational materials science and experimental analysis, equipping her with a unique interdisciplinary skill set that would become invaluable in her later work.

💼 Professional Endeavors

Upon completing her research in Germany, Prof. Song returned to China and joined the College of Materials Science and Engineering at Beijing University of Technology. She swiftly rose through the ranks, becoming a leading figure in the institution. Today, she serves as the Leader of the Hard Metals and Refractory-Metal Based Composites Group. Additionally, she holds the esteemed position of Director of the Key Laboratory of Advanced Functional Materials under the Ministry of Education in China. Her work is pivotal in driving innovation in the development and application of hard metals, tungsten-based composites, and refractory high-entropy alloys. Her group integrates experimental techniques with computational materials science to push the boundaries of material durability, wear resistance, and mechanical performance.

🌟 Contributions and Research Focus

Prof. Song’s research revolves around the design, development, and optimization of advanced metallic materials. Her expertise lies in WC-based hard metals, W-based composites, and refractory high-entropy alloys. Her innovative approach includes:

  • Microstructural Analysis: Investigating the relationship between microstructure and material properties, leading to enhanced performance characteristics.
  • Computational Materials Science: Employing advanced simulations to predict material behaviors and optimize compositions before experimental synthesis.
  • Industrial Applications: Translating laboratory discoveries into real-world engineering applications, including cemented tungsten carbides with superior strength, toughness, wear resistance, and corrosion resistance. Her contributions have led to over 380 peer-reviewed publications and more than 90 authorized patents, several of which have been successfully industrialized. The high-performance tungsten carbide materials developed by her team are now mass-produced and widely applied in high-end engineering sectors, demonstrating her commitment to both academic excellence and industrial impact.

🏆 Accolades and Recognition

Prof. Song’s outstanding contributions to materials science have been recognized with numerous prestigious awards and honors:

  • China National Science Fund for Distinguished Young Scholars, a testament to her leadership in scientific research.
  • First Prize of Provincial Science and Technology Progress Award, highlighting her pioneering work in material innovation.
  • Second Prize of Municipal Natural Science and Technology Award (four times), acknowledging her consistent contributions to advancing materials science. Her recognition extends beyond China, with international academic societies and journals seeking her expertise. Since 2013, she has served as the Associate Editor of the International Journal of Refractory Metals and Hard Materials. In 2024, she was elevated to the role of Co-Editor-in-Chief, reinforcing her status as a global leader in her field.

Publication Top Notes

Seeding ductile nanophase in ceramic grains

Contributors: Chong Zhao; Hao Lu; Haibin Wang; Xuemei Liu; Zhigang Zak Fang; Chao Hou; Xiaoyan Song
Journal: Materials Horizons
Year: 2024
Journal: RSC Advances
Year: 2024
ContributorsZhi Zhao; Xiaotong Zheng; Yurong Li; Xuan Yao; Haibin Wang; Xiaoyan Song
Journal: Advanced Functional Materials
Year: 2024

 

 

Dong Wang | Sustainable Materials | Best Researcher Award

Dr. Dong Wang | Sustainable Materials | Best Researcher Award 

Dr. Dong Wang, Xi’an university of technology, China

Dr. Dong Wang is a faculty member at Xi’an University of Technology in China. He is involved in research and teaching related to [specific field(s) of research or department]. His work contributes to [mention key areas of focus, e.g., materials science, engineering, environmental technology, etc.]. Dr. Wang is committed to advancing knowledge and innovation in his field through both academic and practical applications.

Profile

Scopus

Early Academic Pursuits 🎓

Dr. Wang’s academic journey began with his deep interest in printing and packaging technology, which led him to pursue a Ph.D. at Xi’an University of Technology. Throughout his educational career, he demonstrated a strong aptitude for interdisciplinary studies, integrating materials science with advanced engineering applications. His doctoral research focused on innovative methods for enhancing the properties of packaging materials through the use of biomimetic composites, laying the foundation for his future work in nanomaterials and flexible electronics.

His fascination with the potential of new materials in real-world applications led him to delve into nanotechnology, a field that would become central to his research career. His passion for research grew as he gained expertise in synthesizing new materials with enhanced functionality, including the development of materials inspired by nature—biomimetic composites—that could be applied to a wide range of industries, from packaging to electronics. This early immersion in cutting-edge research provided Dr. Wang with a solid foundation to move forward with his career as an independent researcher and academic.

Professional Endeavors 🛠️

In 2021, Dr. Wang took the position of lecturer at Xi’an University of Technology, marking the beginning of his independent research career. His professional endeavors are characterized by a focus on the development of advanced materials and technologies, particularly those that hold promise for sustainable and intelligent systems.

Dr. Wang’s research interests primarily revolve around the intersection of materials science, electronics, and sustainability. He has made notable strides in the areas of biomimetic composite materials, two-dimensional nanomaterials, flexible electronics technology, and intelligent sensors. These fields are at the forefront of technological advancements, especially in industries that seek to reduce their environmental footprint while improving the functionality of their products.

Contributions and Research Focus 🔬

Dr. Wang has contributed significantly to advancing knowledge in his research areas, publishing papers in some of the most prestigious international journals such as Advanced Materials, Chemical Engineering Journal, Journal of Colloid and Interface Science, and Polymer. His research contributions are instrumental in pushing the boundaries of material science, with a particular focus on improving the performance and functionality of materials used in high-tech industries.

One of his key research focuses is on two-dimensional nanomaterials, which have gained considerable attention due to their unique properties and potential applications in areas like energy storage, sensors, and flexible electronics. His exploration of these materials has opened new avenues for the design of more efficient, sustainable, and versatile materials for a wide range of industries.

 

Accolades and Recognition 🏆

Dr. Wang’s contributions to the field have not gone unnoticed. His exceptional work has earned him several prestigious awards, including the Science and Technology Progress Award from Shaanxi Province and the Science and Technology Award of Colleges from Shaanxi Province. These accolades recognize his innovative contributions to the fields of material science and technology, particularly in the development of advanced materials and their applications.

In addition to these awards, Dr. Wang has been entrusted with several key research projects. He has hosted grants from notable national funding bodies, including the National Natural Science Foundation of China, the China Postdoctoral Fund, and the Shaanxi Provincial Science Foundation. These grants are a testament to his research excellence and the high regard in which his work is held within the scientific community.

Impact and Influence 🌍

Dr. Wang’s research has a far-reaching impact, especially in industries that prioritize sustainability and technological innovation. His work on biomimetic materials is set to revolutionize packaging technology by offering more eco-friendly alternatives to traditional materials. His research into flexible electronics is particularly important as the world moves toward more integrated, wearable, and adaptable technologies.

Furthermore, his innovations in intelligent sensors could change the way industries monitor and interact with their environments. By developing sensors that can provide real-time, actionable data, Dr. Wang is contributing to the broader goal of creating more intelligent, responsive, and sustainable systems. His research holds great potential for fields as diverse as healthcare, industrial automation, and environmental monitoring.

Legacy and Future Contributions 🌱

Looking forward, Dr. Wang’s work is poised to leave a lasting legacy in the fields of material science, electronics, and sustainability. His ongoing research into two-dimensional nanomaterials and flexible electronics technology will continue to shape the next generation of advanced materials and devices. As industries increasingly look for more sustainable solutions, his contributions will be critical in meeting the challenges posed by environmental concerns and technological demands.

Publication Top Notes

Author: Zhu, K., Zhou, X., Wang, D., Hu, J., Luo, R.

Journal: Polymers

Year: 2024

Author: Pu, M., Fang, C., Zhou, X., Lei, W., Li, L.

Journal: Polymers

Year: 2024

Author: Zhu, K., Fang, C., Pu, M., Wang, D., Zhou, X.

Journal: Materials Science and Technology

Year:  2023,