Yun Liu | Polymer weatherability | Research Excellence Award

Ms. Yun Liu | Polymer weatherability | Research Excellence Award 

Beihua University | China

Ms. Yun Liu is an emerging researcher specializing in wood protection, modification technologies, and the environmental durability of bio-based materials. His work centers on understanding the fundamental mechanisms that govern the degradation, transformation, and performance evolution of wood when exposed to natural weathering environments. With a strong academic foundation in materials and chemical engineering, his research contributes valuable scientific insights into the stabilization and performance enhancement of lignocellulosic materials, an area of increasing global relevance as industries move toward sustainable and renewable alternatives to synthetic materials. His primary research investigates the dynamic weathering behavior of heat-treated wood, emphasizing the interconnected pathways through which physical appearance, chemical composition, and microstructural features evolve under environmental stressors. One of his notable contributions is the systematic correlation of surface characteristics—such as color, gloss, and texture—with their underlying chemical transitions, including lignin decomposition, extractive migration, and the evolution of functional groups. This integrated approach advances the understanding of how thermal modification influences the degradation trajectory of lignin, demonstrating that heat treatment does more than slow the rate of degradation; it fundamentally alters the mechanism by which lignin breaks down. This discovery provides a scientific explanation for the enhanced color stability and early-stage weathering resistance observed in thermally modified woods. His published work in peer-reviewed international journals highlights a commitment to experimental rigor, employing advanced characterization techniques such as FTIR spectroscopy, SEM imaging, chromaticity analysis, and chemical component quantification. These methods enable detailed mapping of the relationship between environmental exposure and molecular-level changes, ultimately guiding the development of more robust, weather-resistant wooden materials. Beyond analyzing degradation mechanisms, his research proposes targeted modification strategies designed to enhance wood durability. These include optimizing heat-treatment conditions, protecting susceptible chemical domains, and designing surface treatments that mitigate photodegradation and moisture-induced deterioration. His contributions offer practical benefits for architectural materials, outdoor applications, sustainable construction, and eco-friendly product design. Collectively, his research advances scientific understanding of wood-weathering processes, supports the development of durable bio-based materials, and contributes to the broader goals of sustainable materials science. His work demonstrates both academic merit and real-world relevance, positioning him as a valuable contributor to ongoing innovations in wood science and environmental materials engineering.

 Profile: Orcid

Featured Publication

Liu, Y., Gao, C., Wang, Q., Hadili, B., Miao, Y., Cui, X., & Matsumura, J. (2025). Dynamic weathering behavior of heat-treated Chinese fir: Surface properties, chemical composition, and microstructure. Polymers, 17(23), 3143. https://doi.org/10.3390/polym17233143

Zhao Jing | Functional polymer | Best Researcher Award | 13247

Assoc. Prof. Dr. Zhao Jing | Functional polymer | Best Researcher Award 

Assoc. Prof. Dr. Zhao Jing, Xi’an polytechnic university, China

Assoc. Prof. Dr. Jing Zhao is a researcher at the School of Environmental and Chemical Engineering, Xi’an Polytechnic University, China. She holds a Ph.D. in Polymer Chemistry and Physics from Northwest University, China. Her research focuses on nanomaterials, biomimetic materials, and multifunctional materials, particularly in drug delivery systems and tissue engineering. She has published extensively on chitosan-based nanoparticles, hydrogels, and biomimetic catalysts, contributing to advancements in biocompatible and biodegradable materials for medical applications.

Profile

Scopus

🎓 Early Academic Pursuits

Dr. Jing Zhao was born on February 7, 1985, in Tangshan, Hebei Province, China. With a passion for chemical sciences, she embarked on an academic journey that led her to pursue a Bachelor’s degree in Chemical Engineering and Technology at North University of China, which she successfully completed in 2007. Recognizing her potential in polymer chemistry, she continued her education at North University of China and earned a Master’s degree in Polymer Chemistry and Physics in 2010. Her thesis focused on the synchronistic synthesis and immobilization of cobalt porphyrins on microspheres GMA/MMA and researching the catalytic properties of supported cobalt porphyrins.

Her academic pursuits reached new heights when she enrolled at Northwest University, China, for her Ph.D. in Polymer Chemistry and Physics. During her doctoral studies, she worked on the preparation and properties of polymeric nanoparticles with a cell outer membrane biomimetic structure as a drug delivery system, showcasing her deep interest in biomaterials and nanotechnology.

💼 Professional Endeavors

Dr. Zhao began her professional career in September 2013 as an Associate Professor at the School of Environmental and Chemical Engineering, Xi’an Polytechnic University. Her role has allowed her to mentor students and contribute significantly to the field of polymer science and engineering. Her research has focused on the development of advanced nanomaterials and biomimetic structures, aiming to enhance drug delivery systems and tissue engineering applications.

🔧 Contributions and Research Focus

Dr. Zhao’s research interests are centered around nanomaterials, multifunctional materials, and biomimetic materials. Her work primarily involves:

  • Biodegradable and Biocompatible Nanoparticles: Developing nanoparticles as efficient drug delivery carriers, particularly focusing on chitosan-based nanoparticles.
  • Injectable Hydrogels: Exploring their use as scaffold materials for tissue engineering, aiming to improve biocompatibility and drug delivery efficiency.
  • Polymeric Nanoparticles with Cell Outer Membrane Biomimetic Structures: Creating innovative solutions to mimic biological interactions for better therapeutic applications.
  • Biomimetic Catalysts: Investigating supported cobalt porphyrin catalysts for enhanced catalytic performance in various applications.

Her work has significantly contributed to the advancement of drug delivery mechanisms, particularly in the controlled release of both hydrophobic and hydrophilic drugs.

🏆 Accolades and Recognition

Dr. Zhao’s contributions to polymer chemistry and biomimetic nanomaterials have been recognized through numerous publications in reputable journals. Her research has been cited widely, reflecting the impact of her work on the scientific community. Some of her notable publications include:

  • “Multifunctional Polyvinyl Alcohol/Gallic Acid Functionalized Chitosan Hydrogels for Wound Dressings” (Reactive and Functional Polymers, 2024).
  • “Mussel-Mimetic Chitosan-Based Injectable Hydrogel as a Tissue Adhesive” (International Journal of Adhesion and Adhesives, 2023).
  • “PEGylated Chitosan Decorated UiO‑66 Nanoscale Metal–Organic Frameworks for Drug Delivery” (Colloid and Polymer Science, 2023).
  • “Chitosan-Based Nanoparticles for Controlled Release of Hydrophobic and Hydrophilic Drugs” (Bioinspired, Biomimetic and Nanobiomaterials, 2021).

Her research has played a crucial role in advancing biomimetic materials for medical applications, making significant strides in tissue engineering and drug delivery methodologies.

Publication Top Notes

Multifunctional polyvinyl alcohol/gallic acid functionalized chitosan hydrogels prepared by freeze-thaw method for potential application as wound dressings. Reactive and Functional Polymers,

Author: Lu Cui, Jing Zhao*, Yurui Wang, Xinyi Han, Lingheng Kong, Fei Liang.

Journal: Reactive and Functional Polymers

Year: 2024

Mussel-mimetic chitosan based injectable hydrogel with fast-crosslinking and water-resistance as tissue adhesive. International Journal of Adhesion and Adhesives

Author: Yurui Wang, Jing Zhao, Xiaoran Wang, Rong Zhang, Fei Liang

Journal: Adhesion and Adhesives

Year: 2023