Nabila Tabassum | Advanced Materials Engineering | Women Researcher Award

Ms. Nabila Tabassum | Advanced Materials Engineering | Women Researcher Award

Shiv Nadar Instituion of Eminence, Greater Noida | India

Ms. Nabila Tabassum is a doctoral researcher in Chemical Engineering at the Shiv Nadar Institution of Eminence, Greater Noida, India, whose work spans computational and experimental materials science with a strong focus on atomistic simulations, high-entropy materials, and sustainable energy and catalysis applications. Her research programme is grounded in the integration of density functional theory (DFT) and molecular dynamics (MD) modelling with bench-scale synthesis and characterization of advanced materials. Key thematic areas include the design, modelling and fabrication of high-entropy alloys (HEAs) and high-entropy oxides/ceramics (HEOs/HECs) for high-temperature and thermal-barrier-coating applications; catalytic conversion of bio-derived feedstocks (such as ethanol) to olefins and value-added chemicals; and CO₂ capture / separation by mixed amine and ionic-liquid solvents. Through her research she has developed a broad toolkit comprising high-fidelity atomistic simulation of structural, thermal and mechanical properties of multi-component materials; synthesis via ball-milling, pressing and sintering; catalytic kinetics modelling and heterogeneous catalyst preparation (for example Cd-ZrO₂, Cu-ZrO₂, Fe-ZrO₂ systems); and experimental absorption-based CO₂ capture studies and bio-film formation for food-packaging systems. Her doctoral topic—“Atomistic Simulations for the Development of High Entropy Materials with Superior Thermal Stability and Mechanical Properties”—positions her at the frontier of materials design for extreme environments. Her publications include in 2024 “Structural, Mechanical and Thermal Properties of AlₓCoCrFeNi Alloys” (Metals and Materials International), and in 2025 “Thermal stability assessment of mixed-phase AlCoCrFeNi high entropy alloy: In silico studies” (Physica B). Earlier she published reviews on ethanol to olefins conversion and on CO₂ hydrogenation to ethanol, demonstrating her competence in catalytic processes and kinetic modelling. The citation metrics reflect early-career standing, with strong growth trajectory given the multidisciplinary nature of her work. Her project leadership and participation include: as Senior Research Fellow (SRF) on a Dassault Systèmes–funded project (2024) on development of high-entropy oxides for thermal barrier coatings; leading computational/experimental investigations of HEOs; and participating in synthesis and characterization studies on TBC materials and related coatings. She has also collaborated on catalyst design and CO₂ capture systems, bridging fundamental simulation with applied experimental work. In teaching and mentoring roles, Ms. Tabassum contributes to the academic environment via supervision of M.Tech/B.Tech students, and participates in international conferences and symposiums, thereby disseminating her findings and building networks across materials and energy research communities. Her simulation-first approach, coupled with experimental verification, places her in a strong position to impact high-temperature materials development, energy conversion technologies and sustainable chemical processes.

Profiles: Scopus | Google Scholar

Featured Publications

Ali, S. S., Ali, S. S., & Tabassum, N. (2022). A review on CO₂ hydrogenation to ethanol: Reaction mechanism and experimental studies. Journal of Environmental Chemical Engineering, 10(1), 106962. https://doi.org/10.1016/j.jece.2021.106962

Tabassum, N., Pothu, R., Pattnaik, A., Boddula, R., Balla, P., Gundeboyina, R., Challa, P., Rajesh, R., Perugopu, V., Mameda, N., Radwan, A. B., & Al-Qahtani, N. (2022). Heterogeneous catalysts for conversion of biodiesel-waste glycerol into high-added-value chemicals. Catalysts, 12(7), 767. https://doi.org/10.3390/catal12070767

Tabassum, N., & Ali, S. S. (2021). A review on synthesis and transformation of ethanol into olefins using various catalysts. Catalysis Surveys from Asia, 26(4), 261–280. https://doi.org/10.1007/s10563-021-09348-2

Boddula, R., Shanmugam, P., Srivatsava, R. K., Tabassum, N., Pothu, R., & Naik, R. (2023). Catalytic valorisation of biomass-derived levulinic acid to biofuel additive γ-valerolactone: Influence of copper loading on silica support. Reactions, 4(3), 465–477. https://doi.org/10.3390/reactions4030033

Tabassum, N., Sistla, Y. S., Burela, R. G., & Gupta, A. (2024). Structural, electronic, mechanical and thermal properties of AlₓCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloy using density functional theory. Metals and Materials International, 30(6), 3349–3369. https://doi.org/10.1007/s12540-024-01709-6

Tabassum, N., & Sistla, Y. S. (2025). Thermal stability assessment of mixed-phase AlCoCrFeNi high-entropy alloy: In silico studies. Physica B: Condensed Matter, 712, 417319. https://doi.org/10.1016/j.physb.2025.417319

Sistla, Y. S., Burela, R. G., Gupta, A., & Tabassum, N. (2022). Optical, thermal, and mechanical properties of scheelite molybdate and tungstate materials using atomistic simulations. In Proceedings of the Biennial International Conference on Future Learning Aspects of Mechanical Engineering (FLAME 2022).

Tabassum, N., Sistla, Y., & Burela, R. (2022). The effect of pressure on phase transitions and properties of calcium tungstate solid-state material for laser applications using first-principles study. In Proceedings of YUKTHI Conference (2022).

Doudou Zhang | Materials Science | Best Researcher Award

Dr. Doudou Zhang | Materials Science | Best Researcher Award 

Macquarie University | Australia

Dr. Doudou Zhang is a distinguished Macquarie University Research Fellow (Vice-Chancellor Fellow) and lecturer in the School of Engineering, renowned for her pioneering contributions to functional materials and photoelectrochemical (PEC) energy systems. Her research focuses on the development of advanced materials and device architectures for solar-to-hydrogen conversion, CO₂ reduction, and sustainable ammonia synthesis, integrating materials design, device engineering, and artificial intelligence (AI)-driven approaches to accelerate innovation in renewable energy technologies. Dr. Zhang received her Ph.D. in Chemistry from Shaanxi Normal University, followed by a prestigious postdoctoral research fellowship at the Australian National University (ANU) from 2019 to 2024, where she specialized in photo(electro)catalysis for sustainable hydrogen production. At Macquarie University, she leads several cutting-edge research projects as both sole and co-chief investigator, including the ARENA project (KC012) on accelerating the commercialization of direct solar-to-hydrogen technology (A$2.25M; A$163K at MQ), an ARC Discovery Project (DP250104928) on zero-gap photoelectrochemical ammonia synthesis (A$580K), and the Macquarie University Research Fellowship project on the direct synthesis of earth-abundant bifunctional catalysts (A$848K). Her research portfolio demonstrates a remarkable ability to attract competitive national and industry funding, exceeding A$10 million in cumulative project value through collaborations with industry leaders such as Fortescue Future Industries (FFI). Her earlier work as a main investigator contributed to multiple high-impact projects, including ARENA and FFI-funded initiatives focused on developing low-cost perovskite/silicon semiconductors and macroelectrode electrolysis systems, each driving substantial advances in low-cost green hydrogen production. Beyond academic research, Dr. Zhang has actively engaged with industry, leading consultancy projects like the AEA Ignite initiative (A$489K) for developing durable roll-to-roll functional coatings for next-generation energy devices. Dr. Zhang has achieved an H-index of 21 and over 1,970 citations (Google Scholar, October 2025), reflecting the global influence of her research in energy materials. She has authored 38 peer-reviewed journal papers, 1 book chapter, and 12 granted patents (including one patent that attracted A$833K industrial funding). Her publications are consistently featured in top-tier journals such as Energy & Environmental Science, Advanced Energy Materials, Applied Physics Reviews, Chemical Engineering Journal, Materials Today Energy, Angewandte Chemie International Edition, and Progress in Materials Science. Notably, over 31% of her works rank within the top 10% citation percentiles, and 76% are among the top 25% most cited papers globally. Her contributions also extend to scholarly authorship and thought leadership, including an invited chapter titled “Advances in Perovskite-Based Photocatalysts: Materials Design, Mechanisms, and Applications” in Semiconductors and Semimetals (Elsevier, 2025). Dr. Zhang’s recent works demonstrate the integration of AI and machine learning in catalyst discovery, as seen in her publication “Prospects of AI in Advancing Green Hydrogen Production”.

Profiles: Scopus | Orcid | Google Scholar

Featured Publications

Zhang, D., & Co-authors. (2025, September 25). Minimizing buried interface energy losses via urea phosphate derivatives enable high-efficiency carbon-based mesoscopic perovskite solar cells. Small. https://doi.org/10.1002/smll.202507384

Zhang, D., Pan, W., Lu, H., Wang, Z., Gupta, B., Oo, A. T., Wang, L., Reuter, K., Li, H., Jiang, Y., & Karuturi, S. (2025, September 1). Prospects of AI in advancing green hydrogen production: From materials to applications. Applied Physics Reviews, 12(3), 031335. https://doi.org/10.1063/5.0281416

Attar, F., Riaz, A., Zhang, D., Lu, H., Thomsen, L., & Karuturi, S. (2025, August 15). Advanced NiMoC electrocatalysts precisely synthesized at room temperature for efficient hydrogen evolution across pH ranges. Chemical Engineering Journal, 518, 164494. https://doi.org/10.1016/j.cej.2025.164494

Zhang, D., Pan, W. S., Sharma, A., Shen, H., Lem, O., Saraswathyvilasam, A., Yang, C., Weber, K., Wu, Y., Catchpole, K., Oo, A. T., & Karuturi, S. (2025, March). Over 14% unassisted water splitting driven by immersed perovskite/Si tandem photoanode with Ni-based catalysts. Materials Today Energy, 48, 101809. https://doi.org/10.1016/j.mtener.2025.101809

Wang, P., Oo, A. T., Chen, L., & Zhang, D. (2025). Recent advances of interfacial modification over tantalum nitride photoanodes for solar water oxidation: A mini review. Frontiers in Chemistry, 13, 1600959. https://doi.org/10.3389/fchem.2025.1600959

Zhang, D., Pan, W., Jiang, Y., & Co-authors. (2024, December 28). Defect management and crystallization regulation for high-efficiency carbon-based printable mesoscopic perovskite solar cells via a single organic small molecule. Journal of Materials Chemistry A. https://doi.org/10.1039/d4ta06877g

Ding, J., Zhang, D., Riaz, A., Gu, H., Soo, J. Z., Narangari, P. R., Jagadish, C., Tan, H. H., & Karuturi, S. (2024, November). Scalable amorphous NiFe(OH)x/Fe/graphene bifunctional electrocatalyst via solution-corrosion for water splitting. CCS Chemistry, 6, 2692–2703. https://doi.org/10.31635/ccschem.024.202404423

Zhang, D., & Co-authors. (2024, July 5). Solar-driven ammonia synthesis with Co–TiOx and Ag nanowires enhanced Cu₂ZnSnS₄ photocathodes. Applied Catalysis B: Environmental, 348, 123836. https://doi.org/10.1016/j.apcatb.2024.123836

Wenjihao Hu | Advanced Materials | 13507

Prof. Wenjihao Hu | Advanced Materials 

Prof. Wenjihao Hu, Central South University, China

Professor Wenjihao Hu is a distinguished scholar and Subdean at the School of Resource Processing and Biological Engineering, Central South University, China. As a doctoral supervisor and key member of national and provincial research centers, he has led several major national and international projects focusing on mineral processing, smart mining, and environmental remediation. With over 40 SCI-indexed publications and 10 patents, his innovations in nanoconfined adsorption materials have significantly advanced heavy metal removal techniques. Actively collaborating with top global institutions, Prof. Hu plays a vital role in academic leadership, research innovation, and the cultivation of future scientific talents.

Author Profile

Google Scholar

🎓 Early Academic Pursuits

Professor Wenjihao Hu’s academic journey began with a strong foundation in resource processing and biological engineering. His passion for materials science and environmental sustainability shaped his pursuit of higher education in mineral engineering and nanotechnology. This early dedication led him to academic excellence and specialization in interface chemistry and advanced mineral materials. His academic training prepared him for a multidisciplinary approach, combining colloidal science, surface interactions, and engineering applications. These formative experiences laid the groundwork for a prolific academic and research career centered on solving critical environmental and mineral resource challenges.

🧪 Professional Endeavors

Currently serving as a Professor and Subdean at the School of Resource Processing and Biological Engineering, Central South University, Prof. Hu holds several key leadership roles. He is a distinguished professor at the National Engineering Research Center for Individualized Diagnosis and Treatment Technology, a doctoral supervisor, and Deputy Department Director of the Department of Inorganics. His affiliations also include being a core member of Hunan Province’s key laboratories focusing on strategic calcium mineral resources and mineral materials applications, and a vital contributor to the National Engineering Technology Research Center for Heavy Metal Pollution Prevention.

Prof. Hu has hosted and contributed to numerous national and international research initiatives. These include one National Key R&D Program, two National Natural Science Foundation projects, and international collaborations with institutions such as the University of Alberta, McGill University, Columbia University, University of Queensland, Imperial College London, and many more.

🔬 Contributions and Research Focus: Advanced Materials 

Prof. Hu’s research spans across mineral energy, smart mining, mineral environment, mineral medicine, and applied colloid and interface science. His investigations into nano-confinement mechanisms, surface modification, and intermolecular forces are reshaping the field of mineral processing.

A key contribution includes his study on the nanoconfined adsorption structure ZrP@HNTs. By confining zirconium phosphate within halloysite nanotubes, his team achieved an extraordinary threefold increase in lead ion (Pb²⁺) adsorption capacity, enhancing both performance and stability. This innovation demonstrates how nanoconfinement can enrich ion concentration and facilitate superior surface interaction—a finding confirmed by atomic force microscopy (AFM) and finite element simulations. Such research is instrumental in advancing sustainable and high-efficiency heavy metal remediation technologies.

🏅 Accolades and Recognition

Prof. Hu is widely recognized for his leadership and scientific contributions. He holds prestigious editorial positions including:

  • Editorial Board Member of Chinese and English Journal of Nonferrous Metals

  • Youth Editorial Committee Member of the Journal of Engineering Science

  • Academic Editor of Minerals

  • Member of editorial teams for Comprehensive Utilization of Mineral Resources and Nonferrous Metal Science and Engineering

His professional memberships reflect his leadership in the field, including:

  • Deputy Secretary General, Mining Process Interface Chemistry Committee

  • Vice Chairman, China International Mineral Processing Young Scholars Forum

  • Executive Director, Chinese Ceramics Society

He has published over 40 SCI-indexed journal articles, registered 10 patents, and actively contributes to cutting-edge national research projects, including the National Natural Science Foundation Youth Project and postgraduate innovation projects at Central South University.

🌍 Impact and Influence

Prof. Hu’s multidisciplinary research and leadership have had a transformative impact on both academic and industrial domains. His collaborations with global institutions have fostered academic exchange, capacity building, and technology transfer across continents. He plays a crucial role in mentoring young researchers and postgraduate students, equipping the next generation with practical skills and theoretical insights in nanomaterials, surface chemistry, and sustainable engineering.

Furthermore, his innovative approaches to mineral interface chemistry and clean resource utilization address real-world environmental challenges, particularly in heavy metal pollution—a concern of growing international significance.

🧭 Legacy and Future Contributions

Prof. Wenjihao Hu continues to push boundaries in smart and sustainable mining, advanced material design, and nano-interface interactions. His ongoing projects aim to deepen our understanding of ion selectivity, gas enrichment of materials, and scale-up of nano-composite membranes.

As a core backbone of national and provincial key laboratories, his legacy lies not only in his scientific achievements but also in his commitment to education, collaboration, and public service. With an ever-growing network of international partnerships and a vision for environmental sustainability, Prof. Hu is poised to make even greater contributions in the decades to come.

✍️ Publication Top Notes


📘 Deposition and adhesion of polydopamine on the surfaces of varying wettability

Author: C Zhang, L Gong, L Xiang, Y Du, W Hu, H Zeng, ZK Xu
Journal: ACS applied materials & interfaces

Year: 2017


📘 A magnetic pH-induced textile fabric with switchable wettability for intelligent oil/water separation

Author: T Yan, X Chen, T Zhang, J Yu, X Jiang, W Hu, F Jiao
Journal: Chemical Engineering

Year: 2018


📘Unraveling roles of lead ions in selective flotation of scheelite and fluorite from atomic force microscopy and first-principles calculations

Author: J He, W Sun, H Zeng, R Fan, W Hu, Z Gao
Journal: Minerals Engineering
Year: 2022