Nabila Tabassum | Advanced Materials Engineering | Women Researcher Award

Ms. Nabila Tabassum | Advanced Materials Engineering | Women Researcher Award

Shiv Nadar Instituion of Eminence, Greater Noida | India

Ms. Nabila Tabassum is a doctoral researcher in Chemical Engineering at the Shiv Nadar Institution of Eminence, Greater Noida, India, whose work spans computational and experimental materials science with a strong focus on atomistic simulations, high-entropy materials, and sustainable energy and catalysis applications. Her research programme is grounded in the integration of density functional theory (DFT) and molecular dynamics (MD) modelling with bench-scale synthesis and characterization of advanced materials. Key thematic areas include the design, modelling and fabrication of high-entropy alloys (HEAs) and high-entropy oxides/ceramics (HEOs/HECs) for high-temperature and thermal-barrier-coating applications; catalytic conversion of bio-derived feedstocks (such as ethanol) to olefins and value-added chemicals; and CO₂ capture / separation by mixed amine and ionic-liquid solvents. Through her research she has developed a broad toolkit comprising high-fidelity atomistic simulation of structural, thermal and mechanical properties of multi-component materials; synthesis via ball-milling, pressing and sintering; catalytic kinetics modelling and heterogeneous catalyst preparation (for example Cd-ZrO₂, Cu-ZrO₂, Fe-ZrO₂ systems); and experimental absorption-based CO₂ capture studies and bio-film formation for food-packaging systems. Her doctoral topic—“Atomistic Simulations for the Development of High Entropy Materials with Superior Thermal Stability and Mechanical Properties”—positions her at the frontier of materials design for extreme environments. Her publications include in 2024 “Structural, Mechanical and Thermal Properties of AlₓCoCrFeNi Alloys” (Metals and Materials International), and in 2025 “Thermal stability assessment of mixed-phase AlCoCrFeNi high entropy alloy: In silico studies” (Physica B). Earlier she published reviews on ethanol to olefins conversion and on CO₂ hydrogenation to ethanol, demonstrating her competence in catalytic processes and kinetic modelling. The citation metrics reflect early-career standing, with strong growth trajectory given the multidisciplinary nature of her work. Her project leadership and participation include: as Senior Research Fellow (SRF) on a Dassault Systèmes–funded project (2024) on development of high-entropy oxides for thermal barrier coatings; leading computational/experimental investigations of HEOs; and participating in synthesis and characterization studies on TBC materials and related coatings. She has also collaborated on catalyst design and CO₂ capture systems, bridging fundamental simulation with applied experimental work. In teaching and mentoring roles, Ms. Tabassum contributes to the academic environment via supervision of M.Tech/B.Tech students, and participates in international conferences and symposiums, thereby disseminating her findings and building networks across materials and energy research communities. Her simulation-first approach, coupled with experimental verification, places her in a strong position to impact high-temperature materials development, energy conversion technologies and sustainable chemical processes.

Profiles: Scopus | Google Scholar

Featured Publications

Ali, S. S., Ali, S. S., & Tabassum, N. (2022). A review on CO₂ hydrogenation to ethanol: Reaction mechanism and experimental studies. Journal of Environmental Chemical Engineering, 10(1), 106962. https://doi.org/10.1016/j.jece.2021.106962

Tabassum, N., Pothu, R., Pattnaik, A., Boddula, R., Balla, P., Gundeboyina, R., Challa, P., Rajesh, R., Perugopu, V., Mameda, N., Radwan, A. B., & Al-Qahtani, N. (2022). Heterogeneous catalysts for conversion of biodiesel-waste glycerol into high-added-value chemicals. Catalysts, 12(7), 767. https://doi.org/10.3390/catal12070767

Tabassum, N., & Ali, S. S. (2021). A review on synthesis and transformation of ethanol into olefins using various catalysts. Catalysis Surveys from Asia, 26(4), 261–280. https://doi.org/10.1007/s10563-021-09348-2

Boddula, R., Shanmugam, P., Srivatsava, R. K., Tabassum, N., Pothu, R., & Naik, R. (2023). Catalytic valorisation of biomass-derived levulinic acid to biofuel additive γ-valerolactone: Influence of copper loading on silica support. Reactions, 4(3), 465–477. https://doi.org/10.3390/reactions4030033

Tabassum, N., Sistla, Y. S., Burela, R. G., & Gupta, A. (2024). Structural, electronic, mechanical and thermal properties of AlₓCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloy using density functional theory. Metals and Materials International, 30(6), 3349–3369. https://doi.org/10.1007/s12540-024-01709-6

Tabassum, N., & Sistla, Y. S. (2025). Thermal stability assessment of mixed-phase AlCoCrFeNi high-entropy alloy: In silico studies. Physica B: Condensed Matter, 712, 417319. https://doi.org/10.1016/j.physb.2025.417319

Sistla, Y. S., Burela, R. G., Gupta, A., & Tabassum, N. (2022). Optical, thermal, and mechanical properties of scheelite molybdate and tungstate materials using atomistic simulations. In Proceedings of the Biennial International Conference on Future Learning Aspects of Mechanical Engineering (FLAME 2022).

Tabassum, N., Sistla, Y., & Burela, R. (2022). The effect of pressure on phase transitions and properties of calcium tungstate solid-state material for laser applications using first-principles study. In Proceedings of YUKTHI Conference (2022).

Doudou Zhang | Materials Science | Best Researcher Award

Dr. Doudou Zhang | Materials Science | Best Researcher Award 

Macquarie University | Australia

Dr. Doudou Zhang is a distinguished Macquarie University Research Fellow (Vice-Chancellor Fellow) and lecturer in the School of Engineering, renowned for her pioneering contributions to functional materials and photoelectrochemical (PEC) energy systems. Her research focuses on the development of advanced materials and device architectures for solar-to-hydrogen conversion, CO₂ reduction, and sustainable ammonia synthesis, integrating materials design, device engineering, and artificial intelligence (AI)-driven approaches to accelerate innovation in renewable energy technologies. Dr. Zhang received her Ph.D. in Chemistry from Shaanxi Normal University, followed by a prestigious postdoctoral research fellowship at the Australian National University (ANU) from 2019 to 2024, where she specialized in photo(electro)catalysis for sustainable hydrogen production. At Macquarie University, she leads several cutting-edge research projects as both sole and co-chief investigator, including the ARENA project (KC012) on accelerating the commercialization of direct solar-to-hydrogen technology (A$2.25M; A$163K at MQ), an ARC Discovery Project (DP250104928) on zero-gap photoelectrochemical ammonia synthesis (A$580K), and the Macquarie University Research Fellowship project on the direct synthesis of earth-abundant bifunctional catalysts (A$848K). Her research portfolio demonstrates a remarkable ability to attract competitive national and industry funding, exceeding A$10 million in cumulative project value through collaborations with industry leaders such as Fortescue Future Industries (FFI). Her earlier work as a main investigator contributed to multiple high-impact projects, including ARENA and FFI-funded initiatives focused on developing low-cost perovskite/silicon semiconductors and macroelectrode electrolysis systems, each driving substantial advances in low-cost green hydrogen production. Beyond academic research, Dr. Zhang has actively engaged with industry, leading consultancy projects like the AEA Ignite initiative (A$489K) for developing durable roll-to-roll functional coatings for next-generation energy devices. Dr. Zhang has achieved an H-index of 21 and over 1,970 citations (Google Scholar, October 2025), reflecting the global influence of her research in energy materials. She has authored 38 peer-reviewed journal papers, 1 book chapter, and 12 granted patents (including one patent that attracted A$833K industrial funding). Her publications are consistently featured in top-tier journals such as Energy & Environmental Science, Advanced Energy Materials, Applied Physics Reviews, Chemical Engineering Journal, Materials Today Energy, Angewandte Chemie International Edition, and Progress in Materials Science. Notably, over 31% of her works rank within the top 10% citation percentiles, and 76% are among the top 25% most cited papers globally. Her contributions also extend to scholarly authorship and thought leadership, including an invited chapter titled “Advances in Perovskite-Based Photocatalysts: Materials Design, Mechanisms, and Applications” in Semiconductors and Semimetals (Elsevier, 2025). Dr. Zhang’s recent works demonstrate the integration of AI and machine learning in catalyst discovery, as seen in her publication “Prospects of AI in Advancing Green Hydrogen Production”.

Profiles: Scopus | Orcid | Google Scholar

Featured Publications

Zhang, D., & Co-authors. (2025, September 25). Minimizing buried interface energy losses via urea phosphate derivatives enable high-efficiency carbon-based mesoscopic perovskite solar cells. Small. https://doi.org/10.1002/smll.202507384

Zhang, D., Pan, W., Lu, H., Wang, Z., Gupta, B., Oo, A. T., Wang, L., Reuter, K., Li, H., Jiang, Y., & Karuturi, S. (2025, September 1). Prospects of AI in advancing green hydrogen production: From materials to applications. Applied Physics Reviews, 12(3), 031335. https://doi.org/10.1063/5.0281416

Attar, F., Riaz, A., Zhang, D., Lu, H., Thomsen, L., & Karuturi, S. (2025, August 15). Advanced NiMoC electrocatalysts precisely synthesized at room temperature for efficient hydrogen evolution across pH ranges. Chemical Engineering Journal, 518, 164494. https://doi.org/10.1016/j.cej.2025.164494

Zhang, D., Pan, W. S., Sharma, A., Shen, H., Lem, O., Saraswathyvilasam, A., Yang, C., Weber, K., Wu, Y., Catchpole, K., Oo, A. T., & Karuturi, S. (2025, March). Over 14% unassisted water splitting driven by immersed perovskite/Si tandem photoanode with Ni-based catalysts. Materials Today Energy, 48, 101809. https://doi.org/10.1016/j.mtener.2025.101809

Wang, P., Oo, A. T., Chen, L., & Zhang, D. (2025). Recent advances of interfacial modification over tantalum nitride photoanodes for solar water oxidation: A mini review. Frontiers in Chemistry, 13, 1600959. https://doi.org/10.3389/fchem.2025.1600959

Zhang, D., Pan, W., Jiang, Y., & Co-authors. (2024, December 28). Defect management and crystallization regulation for high-efficiency carbon-based printable mesoscopic perovskite solar cells via a single organic small molecule. Journal of Materials Chemistry A. https://doi.org/10.1039/d4ta06877g

Ding, J., Zhang, D., Riaz, A., Gu, H., Soo, J. Z., Narangari, P. R., Jagadish, C., Tan, H. H., & Karuturi, S. (2024, November). Scalable amorphous NiFe(OH)x/Fe/graphene bifunctional electrocatalyst via solution-corrosion for water splitting. CCS Chemistry, 6, 2692–2703. https://doi.org/10.31635/ccschem.024.202404423

Zhang, D., & Co-authors. (2024, July 5). Solar-driven ammonia synthesis with Co–TiOx and Ag nanowires enhanced Cu₂ZnSnS₄ photocathodes. Applied Catalysis B: Environmental, 348, 123836. https://doi.org/10.1016/j.apcatb.2024.123836